Aim To control the noise of two stroke engine Methods On the basis of noise identification,a new muffler and acoustic shield were designed,Results the car's pass-by noise below the national limit Conclusion throug...Aim To control the noise of two stroke engine Methods On the basis of noise identification,a new muffler and acoustic shield were designed,Results the car's pass-by noise below the national limit Conclusion through proper noise controlling measures,the pass-by noise of two stroke engines could be reduced under national permitting limit.展开更多
Structural intensity (SI) characterization of composite laminates subjected to impact load was dis-cussed. The SI pattern of the laminates which have different fiber orientations and boundary conditions was analyzed. ...Structural intensity (SI) characterization of composite laminates subjected to impact load was dis-cussed. The SI pattern of the laminates which have different fiber orientations and boundary conditions was analyzed. The resultant forces and velocities of the laminates were calculated, and the structural intensity was evaluated. The SI streamlines of carbon fiber reinforced epoxy composite laminates and the steel plates were discussed. The results show that the SI streamlines of the graphite/epoxy laminates are different from that of the steel plates, and the SI streamlines are influenced by the boundaries, the stacking sequence of the composite laminates. The change of the historical central displacement of the graphite/epoxy laminates is fasten than that of the steel plates.展开更多
Permanent magnet synchronous motor (PMSM) is widely used in mining, and there exists chaotic behav- ior when it runs. In order to dispel its adverse effect on security in mining, the chaotic system of PMSM was analyze...Permanent magnet synchronous motor (PMSM) is widely used in mining, and there exists chaotic behav- ior when it runs. In order to dispel its adverse effect on security in mining, the chaotic system of PMSM was analyzed. With noise disturbances, the complex dynamic characteristics of chaos were also analyzed, and proved the objective existence of chaos. As we all know, it is very difficult for conventional PMSM control to meet the design requirements, therefore, in order to ensure the robustness of the system, the chaotic orbits were stabilized to arbitrary chosen fixed points and periodic orbits by means of sliding mode method. Finally MATLAB simulations were presented to confirm the validity of the controller. The results show that the PMSM with the sliding mode control has a good dynamic performance and steady state accuracy.展开更多
For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and...For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.展开更多
As a promising means,the passive porosity technology is used for the trailing-edge noise reduction of a bionic airfoil.The detailed two-dimensional Large Eddy Simulation is achieved to gain a better understanding of t...As a promising means,the passive porosity technology is used for the trailing-edge noise reduction of a bionic airfoil.The detailed two-dimensional Large Eddy Simulation is achieved to gain a better understanding of the prediction and passive control of trailing-edge noise source with the non-porous and porous treatment,respectively.The flow fields around the bionic airfoil indicate that the leading-edge separation causes both the noise contributors,i.e.,the turbulent boundary layer and the vortex shedding.In addition,the effect of the porous trailing edge is substantiated in the distribution of the static pressure.The relevant noise also suggests a pronounced noise reduction potential in excess of 10 dB,but it has dependence on the flow resistivities.The two trailing-edge noise reduction mechanisms are characterized:(1)the suppression of the tonal vortex shedding noise;(2)the reduction of broadband turbulent boundary layer scattering noise.The findings may be used as reference in the design of silent aircraft.展开更多
In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very ...In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time.A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.展开更多
As human beings,people coordinate movements and interact with the environment through sensory information and motor adaptation in the daily lives.Many characteristics of these interactions can be studied using optimiz...As human beings,people coordinate movements and interact with the environment through sensory information and motor adaptation in the daily lives.Many characteristics of these interactions can be studied using optimization-based models,which assume that the precise knowledge of both the sensorimotor system and its interactive environment is available for the central nervous system(CNS).However,both static and dynamic uncertainties occur inevitably in the daily movements.When these uncertainties are taken into consideration,the previously developed models based on optimization theory may fail to explain how the CNS can still coordinate human movements which are also robust with respect to the uncertainties.In order to address this problem,this paper presents a novel computational mechanism for sensorimotor control from a perspective of robust adaptive dynamic programming(RADP).Sharing some essential features of reinforcement learning,which was originally observed from mammals,the RADP model for sensorimotor control suggests that,instead of identifying the system dynamics of both the motor system and the environment,the CNS computes iteratively a robust optimal control policy using the real-time sensory data.An online learning algorithm is provided in this paper,with rigorous convergence and stability analysis.Then,it is applied to simulate several experiments reported from the past literature.By comparing the proposed numerical results with these experimentally observed data,the authors show that the proposed model can reproduce movement trajectories which are consistent with experimental observations.In addition,the RADP theory provides a unified framework that connects optimality and robustness properties in the sensorimotor system.展开更多
文摘Aim To control the noise of two stroke engine Methods On the basis of noise identification,a new muffler and acoustic shield were designed,Results the car's pass-by noise below the national limit Conclusion through proper noise controlling measures,the pass-by noise of two stroke engines could be reduced under national permitting limit.
基金the National Natural Science Founda-tion of China (No. 10472084)
文摘Structural intensity (SI) characterization of composite laminates subjected to impact load was dis-cussed. The SI pattern of the laminates which have different fiber orientations and boundary conditions was analyzed. The resultant forces and velocities of the laminates were calculated, and the structural intensity was evaluated. The SI streamlines of carbon fiber reinforced epoxy composite laminates and the steel plates were discussed. The results show that the SI streamlines of the graphite/epoxy laminates are different from that of the steel plates, and the SI streamlines are influenced by the boundaries, the stacking sequence of the composite laminates. The change of the historical central displacement of the graphite/epoxy laminates is fasten than that of the steel plates.
基金supported in part by the National Natural Science Foundation of China (No. 50879072)the Fundamental Research Funds for the Central Universities of CUMT (No.2010QNB33)The National Undergraduate Innovation Programof CUMT (No. 101029013)
文摘Permanent magnet synchronous motor (PMSM) is widely used in mining, and there exists chaotic behav- ior when it runs. In order to dispel its adverse effect on security in mining, the chaotic system of PMSM was analyzed. With noise disturbances, the complex dynamic characteristics of chaos were also analyzed, and proved the objective existence of chaos. As we all know, it is very difficult for conventional PMSM control to meet the design requirements, therefore, in order to ensure the robustness of the system, the chaotic orbits were stabilized to arbitrary chosen fixed points and periodic orbits by means of sliding mode method. Finally MATLAB simulations were presented to confirm the validity of the controller. The results show that the PMSM with the sliding mode control has a good dynamic performance and steady state accuracy.
基金Supported by the State Key Development Program for Basic Research of China(No.2010CB736104)the National High Technology Research and Development Program of China(No.2012AA111803)
文摘For Lightweight body,sound radiation and sound insulation performance have negative effects on interior noise by the deterioration of local stiffness and modality.So the research on the active control of vibration and noise for car body panels is useful for engineering.Analysis and active control of booming noise in car is researched by using a new active damping vibration reduction technology named smart constrained layer damping(SCLD).According to the vibration characters of body roof,an optimal placement of actuators is distributed.Based on dSPACE hardware in loop environment,an adaptive active control system is designed.Selecting vibration signals of engine mounting point as the reference input of adaptive controller,an active control experiment of booming noise for mini-car is carried out.Experimental results show that,when the engine speed is at 3700 RPM and4250RPM,the interior booming noise decreases 4.2dB(A),and 3.5dB(A) separately.It proposes new methods and techniques for intelligent control of car body NVH in the future.
基金supported by the National Natural Science Fundation of China(Major Project of International Cooperation)(Grant No.50920105504)
文摘As a promising means,the passive porosity technology is used for the trailing-edge noise reduction of a bionic airfoil.The detailed two-dimensional Large Eddy Simulation is achieved to gain a better understanding of the prediction and passive control of trailing-edge noise source with the non-porous and porous treatment,respectively.The flow fields around the bionic airfoil indicate that the leading-edge separation causes both the noise contributors,i.e.,the turbulent boundary layer and the vortex shedding.In addition,the effect of the porous trailing edge is substantiated in the distribution of the static pressure.The relevant noise also suggests a pronounced noise reduction potential in excess of 10 dB,but it has dependence on the flow resistivities.The two trailing-edge noise reduction mechanisms are characterized:(1)the suppression of the tonal vortex shedding noise;(2)the reduction of broadband turbulent boundary layer scattering noise.The findings may be used as reference in the design of silent aircraft.
文摘In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time.A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.
基金supported in part by the US National Science Foundation Grant Nos.ECCS-1101401 and ECCS-1230040
文摘As human beings,people coordinate movements and interact with the environment through sensory information and motor adaptation in the daily lives.Many characteristics of these interactions can be studied using optimization-based models,which assume that the precise knowledge of both the sensorimotor system and its interactive environment is available for the central nervous system(CNS).However,both static and dynamic uncertainties occur inevitably in the daily movements.When these uncertainties are taken into consideration,the previously developed models based on optimization theory may fail to explain how the CNS can still coordinate human movements which are also robust with respect to the uncertainties.In order to address this problem,this paper presents a novel computational mechanism for sensorimotor control from a perspective of robust adaptive dynamic programming(RADP).Sharing some essential features of reinforcement learning,which was originally observed from mammals,the RADP model for sensorimotor control suggests that,instead of identifying the system dynamics of both the motor system and the environment,the CNS computes iteratively a robust optimal control policy using the real-time sensory data.An online learning algorithm is provided in this paper,with rigorous convergence and stability analysis.Then,it is applied to simulate several experiments reported from the past literature.By comparing the proposed numerical results with these experimentally observed data,the authors show that the proposed model can reproduce movement trajectories which are consistent with experimental observations.In addition,the RADP theory provides a unified framework that connects optimality and robustness properties in the sensorimotor system.