期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
软土地区中庭式地铁车站动土正应力分布规律
1
作者 张志明 郭宗程 袁勇 《城市轨道交通研究》 北大核心 2022年第8期204-209,共6页
依托上海某中庭式地铁车站工程,开展了谐波激励及地震波激励下的土-地铁车站模型振动台试验。采集了车站侧墙动土正应力数据,分析了车站侧墙动土正应力的时程、实时分布和峰值分布等响应特征。试验结果显示,在谐波激励下,侧墙动土正应... 依托上海某中庭式地铁车站工程,开展了谐波激励及地震波激励下的土-地铁车站模型振动台试验。采集了车站侧墙动土正应力数据,分析了车站侧墙动土正应力的时程、实时分布和峰值分布等响应特征。试验结果显示,在谐波激励下,侧墙动土正应力时程具有周期性,其时程的频率与输入谐波的频率一致;在地震波激励下,侧墙动土正应力时程仍具有周期性,其时程的一阶卓越频率与场地的一阶卓越频率一致;在同一时刻、同一埋深处,车站左、右侧墙的动土正应力绝对值相差很小,呈一拉一压的状态;侧墙动土正应力峰值整体呈近似L形分布,最大应力发生在侧墙底。 展开更多
关键词 地铁车站 软土地区 动土应力 地震响应
下载PDF
考虑土拱效应和平移的刚性挡土墙被动土压力 被引量:7
2
作者 周亦涛 孙文君 +2 位作者 王学民 杨鹏志 王蓉蓉 《兰州理工大学学报》 CAS 北大核心 2016年第1期119-123,共5页
根据土拱效应原理,得到考虑填土内摩擦角和墙土摩擦角的平移模式下挡土墙的被动滑裂面倾角和侧向被动土应力系数,并将其用于水平微分层法的平移模式下的刚性挡土墙墙背被动土应力的分析中,得到被动土应力、被动土压力及其作用点的计算公... 根据土拱效应原理,得到考虑填土内摩擦角和墙土摩擦角的平移模式下挡土墙的被动滑裂面倾角和侧向被动土应力系数,并将其用于水平微分层法的平移模式下的刚性挡土墙墙背被动土应力的分析中,得到被动土应力、被动土压力及其作用点的计算公式,并与朗肯理论、库仑理论、吴明法、侯键法、模型试验数据进行比较分析.结果表明:本文方法得到的平移模式下刚性挡土墙墙背被动土应力分布与模型试验结果吻合最好,且偏于安全的;被动土应力随填土内摩擦角的增加而增加,在墙顶附近随墙土摩擦角的增加而减小,在墙中下部却随墙土摩擦角的增加而增加;被动滑裂面倾角随墙土摩擦角增大而增大,随填土内摩擦角增大而减小. 展开更多
关键词 土拱效应 刚性挡土墙 平移模式 动土应力分布 被动破裂角
下载PDF
地铁车站结构邻近土体动应力振动台试验研究 被引量:6
3
作者 边金 陶连金 +1 位作者 王文沛 张波 《地下空间与工程学报》 CSCD 北大核心 2011年第4期685-690,共6页
研究地铁车站在地震中的响应对于地铁建设和安全运营非常重要。针对北京地区的地质条件和典型的地铁车站结构进行了大型振动台试验,对动土应力时程进行了分析,得出如下结论:埋深小于结构顶板和埋深大于结构底板的土中动土应力不随输入... 研究地铁车站在地震中的响应对于地铁建设和安全运营非常重要。针对北京地区的地质条件和典型的地铁车站结构进行了大型振动台试验,对动土应力时程进行了分析,得出如下结论:埋深小于结构顶板和埋深大于结构底板的土中动土应力不随输入波强度与埋深变化而变化;在输入波强度低时,侧墙上各点的动土压力相等;在输入波强度高时,侧墙上各点的动土压力随输入波强度的增高而逐渐增大,且动土压力变化幅值随埋深增加而不断增加。通过以上分析,说明在地震强度小时,地下结构对土的水平向动应力影响很小,在地震强度大时,因地下结构的修建进行的开挖削弱了土体,其对土的水平向动应力影响变大。作者还对对结构底板的水平向动切应力进行了拟合,发现:底板的动切应力呈梯形分布,中点处最大,两个端点处最小;底板各点的动切应力随地震波强度的增加呈指数函数增加。为应用方便将底板中点的动切应力与地震波加速度峰值之间的关系简化为:当地震波峰值加速度不大于0.4 g时,峰值切应力为常数;当地震波峰值加速度大于0.4 g时,峰值切应力为直线分布。 展开更多
关键词 振动台 动土应力 底板 梯形分布 指数函数
下载PDF
双排抗滑桩抗震性能振动台试验研究及数值分析 被引量:6
4
作者 赖杰 郑颖人 +2 位作者 刘云 李安红 刘红卫 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第11期4307-4315,共9页
为探讨双排抗滑桩支护下边坡的地震响应及破坏机理,进行振动台模型试验及数值分析。研究结果表明:由于边坡上部缺乏必要支护,裂缝首先在靠近坡顶的坡面与滑面相交处产生;随着地震作用的增大,裂缝沿着滑面向下发展,由于抗滑桩的支挡作用... 为探讨双排抗滑桩支护下边坡的地震响应及破坏机理,进行振动台模型试验及数值分析。研究结果表明:由于边坡上部缺乏必要支护,裂缝首先在靠近坡顶的坡面与滑面相交处产生;随着地震作用的增大,裂缝沿着滑面向下发展,由于抗滑桩的支挡作用而改变下滑方向,最终发生越顶破坏;监测点加速度响应能够反映边坡的物理特性,当坡体产生裂缝或临近最终破坏时,加速度响应规律将发生突变;桩身动土应力分布形式受地震波峰值影响很大,在高烈度下边坡接近破坏时,滑坡推力主要由靠近滑体的桩体上部承担,因此,在抗震设计时桩体上部同样需要加强。 展开更多
关键词 双排抗滑桩 振动台模型试验 数值模拟 裂缝 动土应力
下载PDF
Improved method for determining active earth pressure considering arching effect and actual slip surface 被引量:3
5
作者 HE Zhong-ming LIU Zheng-fu +1 位作者 LIU Xiao-hong BIAN Han-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2032-2042,共11页
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a... To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods. 展开更多
关键词 particle image velocimetry retaining wall soil arching effect active earth pressure
下载PDF
Pore pressure fluctuations of overlying aquifer during residual coal mining and water-soil stress coupling analysis 被引量:1
6
作者 DONG Qing-hong SUI Wang-hua +1 位作者 ZHANG Xiao-cui MAO Zeng-min 《Mining Science and Technology》 EI CAS 2009年第5期648-652,共5页
Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. ... Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face. 展开更多
关键词 pore pressure fluctuations water-soil stress coupling analysis residual coal mining
下载PDF
Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading 被引量:5
7
作者 都浩 李忠献 《Transactions of Tianjin University》 EI CAS 2009年第1期61-64,共4页
In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the... In order to reduce economic and life losses due to terrorism or accidental explosion threats, reinforced concrete (RC) slabs of buildings need to he designed or retrofitted to resist blast loading. In this paper the dynamic behavior of RC slabs under blast loading and its influencing factors are studied. The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software. Both the strain rate effect and the damage accumulation are taken into account in the material model. The dynamic responses of the RC slab subjected to blast loading are analyzed, and the influence of concrete strength, thickness and reinforcement ratio on the behavior of the RC slab under blast loading is numerically investigated. Based on the numerical results, some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading. 展开更多
关键词 blast loading reinforced concrete slab dynamic behavior numerical analysis
下载PDF
On the dissipation of negative excess porewater pressure induced by excavation in soft soil 被引量:4
8
作者 李玉岐 应宏伟 谢康和 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第3期188-193,共6页
Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analy... Unloading induces negative excess porewater pressure in soil mass around a foundation pit during excavation. In this work, the dissipation rule of negative excess porewater pressure after excavation was studied. Analytical formulas for calculating the negative excess porewater pressures and the effective stresses were derived based on one-dimensional consolidation theory and Terzaghi’s effective stress principle. The influence of the dissipation of negative excess porewater pressure on earth pressure inside and outside a foundation pit and the stability of the retaining structure were analyzed through a numerical example. It was indicated that the dissipation of negative excess porewater pressure is harmful to the stability of the retaining structure and that rapid construction can make full use of the negative porewater pressure. 展开更多
关键词 Negative excess porewater pressure Effective stress Earth pressure EXCAVATION
下载PDF
Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests 被引量:1
9
作者 TANG Lian-sheng ZHAO Zhan-lun +2 位作者 CHEN Hao-kun WU Yan-ping ZENG Yu-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期728-742,共15页
The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on... The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model. 展开更多
关键词 granite residual soil creep tests dynamic stress accumulation model
下载PDF
Preparation and Dynamic Tensile Behavior of C200 Green Reactive Powder Concrete 被引量:3
10
作者 ZHANG Yunsheng SUN Wei LIU Sifeng JIAO Chujie LAI Jianzhong 《Transactions of Tianjin University》 EI CAS 2006年第B09期258-263,共6页
A new type of green reactive powder concrete (GRPC) with compressive strength of 200 MPa is prepared by utilizing composite mineral admixtures, natural fine aggregates, and short and fine steel fibers. The quasi-stati... A new type of green reactive powder concrete (GRPC) with compressive strength of 200 MPa is prepared by utilizing composite mineral admixtures, natural fine aggregates, and short and fine steel fibers. The quasi-static mechanical properties (mechanical strength, toughness, fracture energy and interfacial bonding strength) of GRPC specimens, cured in three different types of regimes, are investigated. The experimental results show that the mechanical properties of the C200 GRPC made with the powder binders that is composed of 40% of Portland cement, 25% of ultra fine slag, 25% of ultra fine fly ash and 10% of silica fume are better than the others'. The corresponding compressive strength, flexural strength and fracture energy are more than 200 MPa, and 30 000 J/ m2 respectively. The dynamic tensile behavior of the C200 GRPC is also investigated through the split Hopkinson pressure bar (SHPB) according to the spalling phenomenon. The dynamic testing results demonstrate that strain rate has an important effect on the dynamic tensile behavior of GRPC. With the increase of strain rate, its peak stress and relevant strain increase. The GRPC exhibits an excellent strain ratio stiffening effect under the dynamic tensile load with high strain ratio, resulting in a significant change of the fracture pattern. 展开更多
关键词 C200 green reactive powder concrete(GRPC) dynamic tensile behavior
下载PDF
Impact of Crash Environments on Crashworthiness of Fuselage Section 被引量:2
11
作者 TANG Huan ZHU Shuhua +1 位作者 LIU Xiaochuan XI Xulong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期1-8,共8页
In order to study the crash resistance of the civil aircraft structure in different crash environments,two environmental models of soft soil and water are established to analyze the dynamic response of the fuselage se... In order to study the crash resistance of the civil aircraft structure in different crash environments,two environmental models of soft soil and water are established to analyze the dynamic response of the fuselage section subjected to the vertical at the impact velocity of 7 m/s.Simulation results show that the soft crash environment can have a certain cushioning effect on the structure crash,but it will prolong the crash time and change the energy absorption mode.This work suggests that soft environment may not be suitable for forced landing. 展开更多
关键词 CRASHWORTHINESS dynamic response fuselage section soft soil WATER
下载PDF
The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost 被引量:2
12
作者 WangLanmin ZhangDongli +2 位作者 WuZhijian MaWei LiXiaojun 《Earthquake Research in China》 2004年第1期1-12,共12页
Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by t... Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the M S8 1 earthquake in the west of the Kunlun Mountain Pass, China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai Xizang(Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas. 展开更多
关键词 PERMAFROST Earth temperature Dynamic characteristics Ground motion
下载PDF
Transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil 被引量:14
13
作者 刘干斌 谢康和 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第3期194-201,共8页
Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the trans... Based on Biot’s wave equation, this paper discusses the transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. The analytical solution is derived for the transient response to an axisymmetric surface load and fluid pressure in Laplace transform domain. Numerical results are obtained by inverting the Laplace transform presented by Durbin, and are used to analyze the influences of the partial permeable property of boundary and relative rigidity of shell and soil on the transient response of the spherical cavity. It is shown that the influence of these two parameters is remarkable. The available solutions of permeable and impermeable boundary without shell are only two extreme cases of this paper. 展开更多
关键词 VISCOELASTICITY Partial sealing Spherical shell Transient response
下载PDF
Moisture effect on compressive behavior of concrete under dynamic loading 被引量:2
14
作者 周继凯 丁宁 《Journal of Central South University》 SCIE EI CAS 2014年第12期4714-4722,共9页
The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were exe... The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were executed. The technique "split Hopkinson pressure bar"(SHPB) was used. The impact velocity was 10 m/s with corresponding strain rate of 50 s-1. The compressive behavior of materials was measured in terms of stress-strain curves, dynamic compressive strength, dynamic increase factor(DIF) and critical strain at a maximum stress. The data obtained from test indicate that both ascending and descending portions of stress-stain curves are affected by moisture content. However, the effect is noted to be more significant in ascending portion of the stress-strain curves. Dynamic compressive strength is higher at lower moisture content and weaker at higher moisture content.Furthermore, under nearly saturated condition, an increase in compressive strength can be found. The effect of moisture content on the average DIF of concrete is not significant. The critical compressive strain of concrete does not change with moisture content. 展开更多
关键词 concrete split Hopkinson pressure bar high strain rate compressive behavior moisture content
下载PDF
Digestion mechanism and crystal simulation of roasted low-grade high-sulfur bauxite 被引量:9
15
作者 Hong-fei WU Chao-yi CHEN +4 位作者 Jun-qi LI Yuan-pei LAN Lin-zhu WANG Bian-li QUAN Hui-xin JIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1662-1673,共12页
Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumin... Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties.The results show that sulfur can be efficiently removed,and the alumina digestion properties are significantly improved after suspension roasting.Under optimal conditions(t=70 min,T=280°C,w(CaO)=8%and Nk=245 g/L),the digestion ratios are 94.45%and 92.08%for the suspension-roasted and muffle-roasted ore,respectively,and the apparent activation energies are 63.26 and 64.24 kJ/mol,respectively.Two crystal models were established by Materials Studio based on the XRD patterns.The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion.The(104)and(113)planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace. 展开更多
关键词 high-sulfur bauxite suspension roasting reaction kinetics digestion mechanism crystal structure computer simulation
下载PDF
Active earth pressure acting on retaining wall considering anisotropic seepage effect 被引量:4
16
作者 HU Zheng YANG Zhong-xuan Stephen Philip WILKINSON 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1202-1211,共10页
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of ... This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb's earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb's formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions,showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered. 展开更多
关键词 Active earth pressure Seepage Anisotropic permeability Retaining wall Fourier series expansion Cohesionless soils
下载PDF
Active earth pressure for subgrade retaining walls in cohesive backfills with tensile strength cut-off subjected to seepage effects
17
作者 FU He-lin WANG Cheng-yang LI Huan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2148-2159,共12页
The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the pred... The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion. 展开更多
关键词 active earth pressure seepage effect subgrade retaining wall tensile strength cut-off
下载PDF
A theoretical analysis of vertical dynamic response of large-diameter pipe piles in layered soil 被引量:5
18
作者 丁选明 郑长杰 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2014年第8期3327-3337,共11页
Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was de... Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was derived by Laplace transformation method.The responses in time domain were obtained by inverse Fourier transformation.The results of the analytical solution proposed agree well with the solutions in homogenous soil.The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched.The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil.The smaller the shear modulus,the larger the amplitude of velocity admittance.The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil.The displacements of the piles with the same damping coefficients of the outer soil have less difference.Moreover,the effects of the distribution of soil layers are analyzed.The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer.A larger damping coefficient of the upper layer results in a smaller velocity admittance.The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same. 展开更多
关键词 dynamic response large-diameter pipe pile layered soil velocity admittance dynamic stiffness
下载PDF
Seismic Analysis for Rigid-Framed Prestressed Reinforced Concrete Bridge in Tianjin Light Railway
19
作者 丁阳 李楠 李忠献 《Transactions of Tianjin University》 EI CAS 2004年第4期265-269,共5页
The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the ... The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the soft soil foundation. After the dynamic characteristics are calculated in terms of natural frequencies and modes, the seismic analysis is carried out using the modal response spectrum method and the time-history method, respectively. Based on the calculated results, the reasonable design values are finally suggested as the basis of the seismic design of the bridge, and meanwhile the problems encountered were also analyzed. Finally, some conclusions are drawn as: 1) Despite the superiority of rigid-framed prestressed concrete bridge, the upper and lower ends of the piers of the bridge are proved to be the crucial parts of the bridge, which are easily destroyed under designed earthquake excitations and should be carefully analyzed and designed; 2) The soft soil foundation can possibly result in rather weakening of the lateral rigidity of the rigid-framed bridge, and should be paid considerable attention; 3) The modal response spectrum method, combined with time-history method, is suggested for the seismic analysis in engineering design of the rigid-framed prestressed concrete bridge. 展开更多
关键词 light railway rigid-framed bridge prestressed reinforced concrete seismic analysis dynamic characteristics response spectrum TIME-HISTORY
下载PDF
Dynamic Response of Structure under Blast Load
20
作者 Daniel Makovicka Jr. Daniel Makovicka 《Journal of Civil Engineering and Architecture》 2016年第4期421-429,共9页
The paper follows from the theory of explosion and interaction of an impact wave formed by the explosion and a structure. Firstly, the paper determines the parameters of the blast wave excited by a small charge explos... The paper follows from the theory of explosion and interaction of an impact wave formed by the explosion and a structure. Firstly, the paper determines the parameters of the blast wave excited by a small charge explosion. The empirical formulas on the basis of our own experimental results are shown and used for the structure analysis. Evaluations of structures loaded by an explosion based on dynamic response in rotations round the central line of plate or beam systems during the dynamic load of this type is discussed in the paper and comparison of own limit values and published ones is presented. Blast loads typically produce very high strain rates in the range of 102 to 10-4 s-1. The effect of strain rate for concrete material is discussed. The formulas for increased compressive strength of concrete and steel reinforcement are presented. The ductility of structural members is influenced by the corresponding values under high strain rate of reinforcement, Damage to the structure is assessed accordingly firstly by the angle of rotation of the middle axis/surface, and secondly by the limit internal forces of the selected structure. The extreme nature of blast resistance makes it necessary to accept that structural members have some degree of inelastic response in most cases. This enables the application of structure dissipation using the ductility factor and increased of concrete strength. The limits are correlated with qualitative damage expectations. The methodology of dynamic response assessment and its application to the simple bridge structure is discussed. 展开更多
关键词 Explosion blast wave dynamic load RESPONSE ASSUMPTION bridge structure.
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部