The production of runoff in the source area of a debris flow is the consequence of a reduction in soil strength. Gravel soil is widely distributed in the source region, and the influence of its clay content on soil st...The production of runoff in the source area of a debris flow is the consequence of a reduction in soil strength. Gravel soil is widely distributed in the source region, and the influence of its clay content on soil strength is one of the important questions regarding the formation mechanism of debris flows. In this paper, the clay content in gravel soil is divided into groups of low clay content(1%, 2, 5%), moderate clay content(3.75%, 5.00%, 6.25%, 7.5%) and high clay content(10.0%, 12.5%, 15%). Tests of the unconsolidated undrained shear strength and consolidated drained shear strength were performed. The unconsolidated undrained shearing(UU) experiment simulates the rapid shear failure of loose gravel soil under the conditions of brief heavy rainfall. The consolidated drained shearing(CD) experiment simulates creep failure of consolidated sediment during extended rainfall. The pore water pressure first increased and then decreased as the clay content increased, and the increase in pore pressure was relatively high in the gravel soil sample when the clay content is in the range of 3.25-7.50%, and stress in the gravel soil is relatively low for a moderate clay content. Gravelly soils with a moderate clay content are moreprone to debris-flow initiation. This paper presents a mathematical formula for the maximum shear stress and clay content of gravel soil under two conditions. The key processes whereby the soil fails and triggers a debris flow—volume contraction of soil, expansion of clay soil, and rise of pore pressure―cause reductions in the soil friction force and enhancement of the water content in the clay particles, and subsurface erosion of soil reduces the soil viscosity, which eventually reduces the soil strength so that the soil loses its stability, liquefies and generates a debris flow.展开更多
It is well understood that for conventional survey designs the set of unordered distinct units in a sample is a minimally sufficient statistic. This means that for inferential statistic of the sample, the value of the...It is well understood that for conventional survey designs the set of unordered distinct units in a sample is a minimally sufficient statistic. This means that for inferential statistic of the sample, the value of the sampled units rather than the sample design is important. Sampling rare populations presents distinct challenges. Examples of rare populations are in biology with rare and endangered animals where there are only a few remaining individuals, or in social science, with the low incidence of people from an unusually high (or low) income group. Sampling rare populations tends to result in the case that many of the sample units do not contain information on the characteristic of interest (e.g., the rare animal, or people from the unusual income group). For finite rare populations the set of unordered distinct rare-units in a sample is a minimally sufficient statistic. In an example case study of a rare buttercup, the properties of the minimal sufficient estimator are explored. We compare the efficiency of the estimator for the population total based on the minimally sufficient statistic, with the standard estimator for a range of sample sizes. The variance of the minimally sufficient estimator was always smaller than the variance of the sufficient estimator. For rare populations where non-rare units can be distinguished from rare units because they have the same fixed value, the minimal sufficient statistic is the rare units, if any, in the sample.展开更多
Heavy metals are persistent pollutants in the environment. Problems associated with the cleanup of sites contaminated by metals have demonstrated the need to develop remediation technologies that are feasible, quick, ...Heavy metals are persistent pollutants in the environment. Problems associated with the cleanup of sites contaminated by metals have demonstrated the need to develop remediation technologies that are feasible, quick, and effective in a wide range of physical settings. In this study we have investigated the adsorption of Cu(lI), onto red soil in single and multi-element systems as a function of soil and heavy metal concentrations. Before contamination, soils were characterized to determine particle size, pH, organic matter content and heavy metal contents. The results of experimental sorption data fitted very well the Freundlich isotherm model with n = 1.4 and k = 1.25 and first order kinetics model. The best pH for adsorption of Cu^2+ on red soil was found to be 4.0. Adsorption of metals on soil increased in the order Cu 〉 Pb 〉 Zn ≈ Cd. This trend might be related to the increase in the electronegativity of the metal ion.展开更多
A number of basic and applied questions in ecology and environmental management require the characterization of soil and leaf litter faunal diversity. Recent advances in high-throughput sequencing of barcode-gene ampl...A number of basic and applied questions in ecology and environmental management require the characterization of soil and leaf litter faunal diversity. Recent advances in high-throughput sequencing of barcode-gene amplicons ('metabarcoding') have made it possible to survey biodiversity in a robust and efficient way. However, one obstacle to the widespread adoption of this technique is the need to choose amongst many candidates for bioinformatic processing of the raw sequencing data. We compare three candidate pipelines for the processing of 18S small subunit rDNA metabarcode data from solid substrates: (i) USEARCH/CROP, (ii) Denoiser/UCLUST, and (iii) OCTUPUS. The three pipelines produced reassuringly similar and highly correlated assessments of community composition that are dominated by taxa known to characterize the sampled environments. However, OCTUPUS appears to inflate phylogenetic diversity, because of higher sequence noise. We therefore recommend either the USEARCH/CROP or Denoiser/UCLUST pipelines, both of which can be run within the QIIME (Quantitative Insights Into Microbial Ecology) environment.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41501012 and 41502337)the China Geological Survey(Grant No.121201010000150003)
文摘The production of runoff in the source area of a debris flow is the consequence of a reduction in soil strength. Gravel soil is widely distributed in the source region, and the influence of its clay content on soil strength is one of the important questions regarding the formation mechanism of debris flows. In this paper, the clay content in gravel soil is divided into groups of low clay content(1%, 2, 5%), moderate clay content(3.75%, 5.00%, 6.25%, 7.5%) and high clay content(10.0%, 12.5%, 15%). Tests of the unconsolidated undrained shear strength and consolidated drained shear strength were performed. The unconsolidated undrained shearing(UU) experiment simulates the rapid shear failure of loose gravel soil under the conditions of brief heavy rainfall. The consolidated drained shearing(CD) experiment simulates creep failure of consolidated sediment during extended rainfall. The pore water pressure first increased and then decreased as the clay content increased, and the increase in pore pressure was relatively high in the gravel soil sample when the clay content is in the range of 3.25-7.50%, and stress in the gravel soil is relatively low for a moderate clay content. Gravelly soils with a moderate clay content are moreprone to debris-flow initiation. This paper presents a mathematical formula for the maximum shear stress and clay content of gravel soil under two conditions. The key processes whereby the soil fails and triggers a debris flow—volume contraction of soil, expansion of clay soil, and rise of pore pressure―cause reductions in the soil friction force and enhancement of the water content in the clay particles, and subsurface erosion of soil reduces the soil viscosity, which eventually reduces the soil strength so that the soil loses its stability, liquefies and generates a debris flow.
文摘It is well understood that for conventional survey designs the set of unordered distinct units in a sample is a minimally sufficient statistic. This means that for inferential statistic of the sample, the value of the sampled units rather than the sample design is important. Sampling rare populations presents distinct challenges. Examples of rare populations are in biology with rare and endangered animals where there are only a few remaining individuals, or in social science, with the low incidence of people from an unusually high (or low) income group. Sampling rare populations tends to result in the case that many of the sample units do not contain information on the characteristic of interest (e.g., the rare animal, or people from the unusual income group). For finite rare populations the set of unordered distinct rare-units in a sample is a minimally sufficient statistic. In an example case study of a rare buttercup, the properties of the minimal sufficient estimator are explored. We compare the efficiency of the estimator for the population total based on the minimally sufficient statistic, with the standard estimator for a range of sample sizes. The variance of the minimally sufficient estimator was always smaller than the variance of the sufficient estimator. For rare populations where non-rare units can be distinguished from rare units because they have the same fixed value, the minimal sufficient statistic is the rare units, if any, in the sample.
文摘Heavy metals are persistent pollutants in the environment. Problems associated with the cleanup of sites contaminated by metals have demonstrated the need to develop remediation technologies that are feasible, quick, and effective in a wide range of physical settings. In this study we have investigated the adsorption of Cu(lI), onto red soil in single and multi-element systems as a function of soil and heavy metal concentrations. Before contamination, soils were characterized to determine particle size, pH, organic matter content and heavy metal contents. The results of experimental sorption data fitted very well the Freundlich isotherm model with n = 1.4 and k = 1.25 and first order kinetics model. The best pH for adsorption of Cu^2+ on red soil was found to be 4.0. Adsorption of metals on soil increased in the order Cu 〉 Pb 〉 Zn ≈ Cd. This trend might be related to the increase in the electronegativity of the metal ion.
基金supported by Yunnan Province (20080A001)Chinese Academy of Sciences (0902281081,KSCX2-YW-Z-1027)+2 种基金the National Natural Science Foundation of China (31170498)Ministry of Science and Technology of China (2012FY110800)Kunming Institute of Zoology,and the University of East Anglia
文摘A number of basic and applied questions in ecology and environmental management require the characterization of soil and leaf litter faunal diversity. Recent advances in high-throughput sequencing of barcode-gene amplicons ('metabarcoding') have made it possible to survey biodiversity in a robust and efficient way. However, one obstacle to the widespread adoption of this technique is the need to choose amongst many candidates for bioinformatic processing of the raw sequencing data. We compare three candidate pipelines for the processing of 18S small subunit rDNA metabarcode data from solid substrates: (i) USEARCH/CROP, (ii) Denoiser/UCLUST, and (iii) OCTUPUS. The three pipelines produced reassuringly similar and highly correlated assessments of community composition that are dominated by taxa known to characterize the sampled environments. However, OCTUPUS appears to inflate phylogenetic diversity, because of higher sequence noise. We therefore recommend either the USEARCH/CROP or Denoiser/UCLUST pipelines, both of which can be run within the QIIME (Quantitative Insights Into Microbial Ecology) environment.