期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
结构抗冲击设计的泰勒理论修正及计算机模拟 被引量:1
1
作者 辜文杰 李刚 谢云 《四川建筑科学研究》 北大核心 2008年第2期22-25,共4页
结构在冲击荷载作用下其材料的屈服强度提高,弹靶碰撞可用来确定材料的动屈服强度。本文提出了一种新的弹靶接触面积增长模型——阻滞增长模型,该模型假设接触面积的增长率为接触面积的减函数,并采用该模型对经典的弹靶撞击理论——Tay... 结构在冲击荷载作用下其材料的屈服强度提高,弹靶碰撞可用来确定材料的动屈服强度。本文提出了一种新的弹靶接触面积增长模型——阻滞增长模型,该模型假设接触面积的增长率为接触面积的减函数,并采用该模型对经典的弹靶撞击理论——Taylor理论,进行了修正。与Taylor理论和钱伟长修正理论相比,本文的理论更符合实际,并与有限元结果一致。 展开更多
关键词 阻滞增长模型 修正泰勒理论 动屈服强度
下载PDF
弹靶碰撞的修正泰勒理论及计算机模拟
2
作者 辜文杰 李刚 谢云 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期608-612,共5页
弹靶碰撞可用来确定材料的动屈服强度,作者提出了一种新的弹靶接触面积增长模型——阻滞增长模型,该模型假设接触面积的增长率为接触面积的减函数.并采用该模型对经典的弹靶撞击理论——Taylor理论,进行了修正.与Taylor理论和钱伟长修... 弹靶碰撞可用来确定材料的动屈服强度,作者提出了一种新的弹靶接触面积增长模型——阻滞增长模型,该模型假设接触面积的增长率为接触面积的减函数.并采用该模型对经典的弹靶撞击理论——Taylor理论,进行了修正.与Taylor理论和钱伟长修正理论相比,本文的理论更符合实际,并与有限元结果一致. 展开更多
关键词 阻滞增长模型 修正泰勒理论 动屈服强度
下载PDF
Fracture energy evaluation on 7075-T651 aluminum alloy welds determined by instrumented impact pendulum 被引量:1
3
作者 R.R.AMBRIZ D.JARAMILLO +1 位作者 C.GARCIA F.F.CURIEL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期974-983,共10页
By using an instrumented impact pendulum, the force versus time curves of 7075-T651 aluminum welds were obtained from standard Charpy-V samples. Considering the force-time curves and constant impact velocity, the frac... By using an instrumented impact pendulum, the force versus time curves of 7075-T651 aluminum welds were obtained from standard Charpy-V samples. Considering the force-time curves and constant impact velocity, the fracture energies for different zones were quantified. A fracture energy improvement for the HAZ(33.6 J) was observed in comparison with the weld metal(7.88 J), and base metal(5.37 J and 7.37 J for longitudinal and transverse directions, respectively). This toughness increment was attributed to the microstructural transformation caused by the thermodynamic instability of η′ precipitates during the welding. Fracture energy for weld metal was higher than that for base metal, probably due to pores created during solidification. Regarding the dynamic yielding force obtained from the force-time curves, an approximation to the dynamic yield strength for weld, HAZ and base metal was determined. Fracture surfaces revealed an intergranular failure for base metal in longitudinal direction, whereas a predominately brittle failure(cleavage) with some insights of ductile characteristics was observed for the transverse direction. In contrast, a ductile failure was observed for weld metal and HAZ. 展开更多
关键词 7075-T651 welded joint instrumented Charpy pendulum force-time curve fracture energy dynamic yield strength
下载PDF
Design and biomechanical study of a modified pedicle screw 被引量:1
4
作者 刘洪 郑文杰 +2 位作者 李长青 刘国栋 周跃 《Chinese Journal of Traumatology》 CAS 2010年第4期222-228,共7页
Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torq... Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torque and internal fixation strength. While polyaxial screws facilitate the assembly of the connecting rod, but its ball-in-cup locking mechanism reduces the static compressive bending yield strength as compared with monoaxial screws. Our study aimed to assess the mechanical performance of a modified pedicle screw. Methods: In this study, the tail of the screw body of the modified pedicle screw was designed to be a cylindershaped structure that well matched the inner wall of the screw head and the screw head only rotated around the cyclinder. Monoaxial screws, modified screws and polyaxial screws were respectively assembled into 3 groups ofvertebrectomy models simulated by ultra high molecular weight polyethylene (UHMWPE) blocks. This model was developed according to a standard for destructive mechanical testing published by the American Society for Testing Materials (ASTM F1717-04). Each screw design had 6 subgroups, including 3 for static tension, load compression and torsion tests, and the rest for dynamic compression tests. In dynamic tests, the cyclic loads were 25%, 50%, and 75% of the compressive bending ultimate loads respectively. Yield load, yield ultimate load, yield stiffness, torsional stiffness, cycles to failure and modes of failure for the 3 types of screws were recorded. The results of modified screws were compared with those ofmonoaxial and polyaxial screws. Results: In static tests, results of bending stiffness, yield load, yield torque and torsional stiffness indicated no significant differences between the modified and monoaxial screws (P〉0.05), but both differed significantly from those ofpolyaxial screws (P〈0.05). In dynamic compression tests, both modified and monoaxial screws showed failures that occurred at the insertion point of screw body into the UHMWPE block, while the polyaxial screw group showed screw body swung up and down the screw head because of loosening of the ball-in-cup mechanism. Conclusions: The modified screw is well-designed and biomechanically improved. And it can provide sufficient stability for segment fixation as monoaxial screws. 展开更多
关键词 Bone screws BIOMECHANICS SPINE Internal fixators
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部