期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
有轨电车嵌入式轨道路基荷载动应力特性分析
1
作者 谢宏伟 罗强 +3 位作者 蒋良潍 张良 王腾飞 刘钢 《西南交通大学学报》 EI CSCD 北大核心 2023年第2期479-488,共10页
掌握有轨电车交通荷载下路基动力响应特性是设计嵌入式轨道路基结构的关键技术前提.首先,考虑车体间铰接形式、轨道支承特点与路基阻尼影响,构建有轨电车-嵌入式轨道-土质路基耦合动力学模型;然后,以中国普通干线铁路轨道谱为激励,进行... 掌握有轨电车交通荷载下路基动力响应特性是设计嵌入式轨道路基结构的关键技术前提.首先,考虑车体间铰接形式、轨道支承特点与路基阻尼影响,构建有轨电车-嵌入式轨道-土质路基耦合动力学模型;然后,以中国普通干线铁路轨道谱为激励,进行动力学仿真;最后,分析路基面承受车辆荷载特点,并讨论动应力放大系数的概率分布特征与沿深度衰减规律.研究表明:嵌入式轨道结构路基面动应力的幅值受轨道随机不平顺影响服从正态分布规律;在有轨电车轴重11 t、设计速度100 km/h、90%干线轨道谱条件下,路基面动应力放大系数服从正态分布N(1.008, 0.1002),超越概率30%的常遇动力系数为1.058,保证率为99.9%的极限动力系数为1.308;受路基材料阻尼影响,动应力放大系数沿深度线性衰减,阻尼增大,衰减趋势加剧;随着深度增加,动应力放大系数均值逐渐减小,由动力作用增大区略大于1过渡到动力作用减弱区小于1. 展开更多
关键词 路基动应力特性 耦合动力学 有轨电车 嵌入式轨道
下载PDF
涡带工况下混流式水轮机转轮动应力特性分析 被引量:18
2
作者 肖若富 王正伟 罗永要 《水力发电学报》 EI CSCD 北大核心 2007年第4期130-134,140,共6页
近年来,国内一些大型混流式转轮出现了不同程度的裂纹问题,对机组安全运行构成了威胁。研究表明,水力激励引起的混流式水轮机转轮叶片动应力是引起叶片疲劳破坏的主要原因之一。文中首先对高水头小负荷的涡带工况下混流式水轮机内流场... 近年来,国内一些大型混流式转轮出现了不同程度的裂纹问题,对机组安全运行构成了威胁。研究表明,水力激励引起的混流式水轮机转轮叶片动应力是引起叶片疲劳破坏的主要原因之一。文中首先对高水头小负荷的涡带工况下混流式水轮机内流场进行非定常CFD计算,得到涡带工况下叶片表面不同时刻的水压力载荷,并利用流固耦合方法对转轮进行结构场瞬态特性计算,分析转轮叶片的动应力特性。结果表明由于水压力脉动引起的转轮叶片上的振动交变动应力是混流式水轮机疲劳破坏的主要原因之一。计算结果可为其它水轮机转轮的动应力特性分析和疲劳分析提供参考。 展开更多
关键词 水轮机 流场计算 流固耦合 动应力特性
下载PDF
高速铁路无砟轨道−路基动应力特性分析 被引量:1
3
作者 柳厚祥 朱性彬 《交通科学与工程》 2021年第4期1-7,共7页
为研究无砟轨道−路基在高速列车运行过程中的振动响应,采用有限元方法在时域中建立全尺寸3D路基模型,分析路基各层动应力水平及其沿线路竖向、横向和纵向的变化幅度,并将武广、遂渝铁路实测数据与模型结果进行对比。研究结果表明:在竖... 为研究无砟轨道−路基在高速列车运行过程中的振动响应,采用有限元方法在时域中建立全尺寸3D路基模型,分析路基各层动应力水平及其沿线路竖向、横向和纵向的变化幅度,并将武广、遂渝铁路实测数据与模型结果进行对比。研究结果表明:在竖直方向上,有限元计算的路基各处动应力均略高于线路实测数据,地基顶面衰减值较为接近,在z=0.4、2.7、4.7 m处衰减值分别为95%、47%、30%,而模型试验最终衰减值较高。路基动应力在基床表层范围内沿线路横向呈“马鞍形”分布,线路中心与支撑层边缘差值较大,随着路基深度的增加,分布特征逐渐转变为中间高两边低,向线路两侧衰减且差值较小。路基动应力沿纵向呈“高斯”分布特征,路基各层竖向动应力幅值沿线路y向衰减一致,轨道板边缘处荷载衰减至轨道板中心的13%~16%。 展开更多
关键词 高速铁路 路基动力响应 数值模拟 动应力特性
下载PDF
轴流转浆式水轮机桨叶的动应力特性 被引量:9
4
作者 肖若富 王正伟 罗永要 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第11期2014-2017,共4页
通过对轴流式水轮机全流道内流场进行13个稳定运行工况的非定常流场计算,得到不同工况下转轮桨叶表面非定常水压力载荷,并利用顺序流固耦合方法对桨叶在各种工况下的动应力特性进行计算分析。结果表明:在下游水位下降、机组水头升高时,... 通过对轴流式水轮机全流道内流场进行13个稳定运行工况的非定常流场计算,得到不同工况下转轮桨叶表面非定常水压力载荷,并利用顺序流固耦合方法对桨叶在各种工况下的动应力特性进行计算分析。结果表明:在下游水位下降、机组水头升高时,机组在小功率工况下水力稳定性变差;同时表明机组长期在高水头小功率条件下运行时,由于水压力脉动引起的较大动应力是造成桨叶微裂纹的主要原因。计算结果可为水轮机其他零部件的应力特性及疲劳裂纹分析提供参考。 展开更多
关键词 轴流式水轮机 流场计算 流固耦合 动应力特性
原文传递
Dynamic Characteristics of Long -Span Steel -Concrete CompositeBeam Bridge Based on Vehicle -Bridge Coupling Effect
5
作者 WANG Jianxing CAI Ran +1 位作者 JIA Yumeng ZHANG Jianmeng 《吉首大学学报(自然科学版)》 CAS 2024年第5期45-51,共7页
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat... In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192. 展开更多
关键词 highway bridge vehicle-bridge coupling effect steel-concrete composite beam suspension bridge dynamic characteristics
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
6
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Experimental and CFD Studies on the Performance of Microfiltration Enhanced by a Turbulence Promoter 被引量:2
7
作者 刘元法 贺高红 +3 位作者 丁路辉 窦红 鞠佳 李保军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期617-624,共8页
This paper reports experimental and computational fluid dynamics(CFD) studies on the performance of microfiltration enhanced by a helical screw insert.The experimental results show that the use of turbulence pro-moter... This paper reports experimental and computational fluid dynamics(CFD) studies on the performance of microfiltration enhanced by a helical screw insert.The experimental results show that the use of turbulence pro-moter can improve the permeate flux of membrane in the crossflow microfiltration of calcium carbonate suspension,and flux improvement efficiency is strongly influenced by operation conditions.The energy consumption analysis indicates that the enhanced membrane system is more energy saving at higher feed concentrations.To explore the intrinsic mechanism of flux enhancement by a helical screw insert,three-dimensional CFD simulation of fluid flow was implemented.It reveals that hydrodynamic characteristics of fluid flow inside the channel are entirely changed by the turbulence promoter.The rotational flow pattern increases the scouring effect on the tube wall,reducing the particle deposition on the membrane surface.The absence of stagnant regions and high wall shear stress are respon-sible for the enhanced filtration performance.No secondary flow is generated in the channel,owing to the streamline shape of helical screw insert,so that the enhanced performance is achieved at relatively low energy consumption. 展开更多
关键词 membrane fouling flux enhancement turbulence promoter computational fluid dynamics
下载PDF
Basic dynamic characteristics and seismic design of anchorage system
8
作者 段建 言志信 +1 位作者 任志华 赵红亮 《Journal of Central South University》 SCIE EI CAS 2014年第8期3275-3283,共9页
Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the ... Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme. 展开更多
关键词 anchorage system natural frequency vibration mode dangerous region resonance line seismic precautionary
下载PDF
Dynamic Response Analysis of a Floating Mooring System 被引量:1
9
作者 LE Conghuan DING Hongyan ZHANG Puyang 《Journal of Ocean University of China》 SCIE CAS 2014年第3期381-389,共9页
An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For thi... An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height. 展开更多
关键词 floating mooring system model test wave characteristics impact force motion response
下载PDF
Dynamic behaviors of pretensioned cable AERORail structure
10
作者 李方元 吴培峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2267-2276,共10页
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte... The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure. 展开更多
关键词 pretensioned cable AERORail structure dynamic bchavior model test vibration characteristic dynamic amplification factor influence line
下载PDF
Study the Influence of a Gap between the Wing and Slotted Flap over the Aerodynamic Characteristics of Ultra-Light Aircraft Wing Airfoil
11
作者 Cvetelina Velkova Michael Todorov Guillaume Durand 《Journal of Mechanics Engineering and Automation》 2015年第5期278-285,共8页
The purpose of the study is to assess what the influence of the distance of the gap is between the wing and slotted flap on the aerodynamic characteristics of ultra-light aircraft wing when the flap is retracted. It h... The purpose of the study is to assess what the influence of the distance of the gap is between the wing and slotted flap on the aerodynamic characteristics of ultra-light aircraft wing when the flap is retracted. It has been elected numerical approach to the study and it is been realized through applied numerical model of the wing airfoil NACA 2412 for three different lengths of slotted gap size, whose length is expressed as percentages of the airfoil chord. The code ANSYS FLUENT has been applied, as it has been determined RANS (Reynolds-averaged Navier-Stokes) equations and DES (detached-eddy simulation) turbulent model has been used. 展开更多
关键词 AERODYNAMICS wing airfoil slotted flap GAP numerical approach.
下载PDF
Tests and numerical simulation of aerodynamic characteristics of airfoils for general aviation applications
12
作者 Zhang Lizhen Wang Xiaoming +1 位作者 Miguel A. Gonzáilez Hemáindez Wang Jun 《Engineering Sciences》 EI 2008年第4期71-74,共4页
This paper was to validate the effects of airfoil thickness ratio on the characteristics of a family of airfoils. Research was carried out in different ways. First,tests were conducted in the wind tunnel. And numerica... This paper was to validate the effects of airfoil thickness ratio on the characteristics of a family of airfoils. Research was carried out in different ways. First,tests were conducted in the wind tunnel. And numerical simulation was performed on the basis of tests. Results from calculation were consistent with tests,indicating that numerical method could help evaluate characteristics of airfoils. Then the results were confirmed by compared with empirical data. The study also showed that the determining factor of lift is not only the thickness ratio,but the angle of attack,the relative camber and the camber line. The thickness ratio appears to have little effect on lift coefficient at zero angle of attack,since the angle of zero lift is largely determined by the airfoil camber. According to the research,numerical simulation can be used to determine the aerodynamic characteristics of airfoils in different environment such as in the dusty or humid air. 展开更多
关键词 aerodynamic characteristics numerical simulation AIRFOIL thickness ratio
下载PDF
Theoretical and experimental research on characteristics of lateral vibration for a pre-stress bolt supporting system
13
作者 LI Qing-feng ZHU Chuan-qu DUAN YU 《Journal of Coal Science & Engineering(China)》 2009年第1期33-37,共5页
According to the structure and stress trait of bearing bolts,a lateral-vibrationmechanics model was established for them,and the relation between lateral-vibration frequencyand axial load was analyzed;then,lateral-vib... According to the structure and stress trait of bearing bolts,a lateral-vibrationmechanics model was established for them,and the relation between lateral-vibration frequencyand axial load was analyzed;then,lateral-vibration trait of bearing bolts was studiedthrough laboratory simulation test.The results indicate that vibration frequency of boltsupport system increases as well as axial force,the detection on axial load of bolts can bemade by generating lateral vibration of bearing bolts.Theoretical and experimental researchresults show that frequency method is effective for detecting the axial force of boltsupport system. 展开更多
关键词 prestressed bolts lateral vibration axial force nondestructive detection
下载PDF
Effects of Fluorescent Pair on the Kinetics of DNA Strand Displacement Reaction
14
作者 Chengxu Li Shiyan Xiao Haojun Liang 《Chinese Journal of Chemical Physics》 SCIE EI CAS 2024年第5期679-684,I0094-I0098,I0101,共12页
Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate ... Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5°C,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits. 展开更多
关键词 DNA strand displacement Fluorescent label Kinetics Thermodynamic property
下载PDF
Study on Local Resistance of non-Newtonian Power Law Fluid in Elbow Pipes 被引量:4
15
作者 ZHANG Hao XU Tiantian +3 位作者 ZHANG Xinxin WANG Yuxiang WANG Yuancheng LIU Xueting 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第3期287-291,共5页
This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By emp... This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing nu- merical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and differcnt diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficicnt. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes. 展开更多
关键词 non-Newtonian fluid Local resistance coefficient Reynolds number Bend diameter ratio ROUGHNESS
原文传递
Studies on a low Reynolds number airfoil for small wind turbine applications 被引量:8
16
作者 Joji WATA Mohammed FAIZAL +3 位作者 Boniface TALU Lesia VANAWALU Puamau SOTIA M.Rafiuddin AHMED 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第7期1684-1688,共5页
In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditio... In contrast to large horizontal axis wind turbines (HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are required for producing power without necessarily the best wind conditions. A low Reynolds number airfoil was designed after testing a number of low Reynolds number airfoils and then making one of our own; it was tested for use in small HAWTs. Studies using XFOIL and wind tunnel experiments were performed on the new airfoil at various Reynolds numbers. The pressure distribution, C p , the lift and drag coefficients, C L and C D , were studied for varying angles of attack, α. It is found that the airfoil can achieve very good aerodynamic characteristics at different Reynolds numbers and can be used as an efficient airfoil in small HAWTs. 展开更多
关键词 low Reynolds number AIRFOIL small wind turbines pressure distribution coefficient of lift coefficient of drag
原文传递
Blood flow analysis in tapered stenosed arteries with pseudoplastic characteristics 被引量:5
17
作者 Noreen Sher Akbar S. Nadeem 《International Journal of Biomathematics》 2014年第6期89-106,共18页
In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteristics is analyzed, assuming the flow is steady a... In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteristics is analyzed, assuming the flow is steady and blood is treated as Williamson fluid. Per- turbation solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest. 展开更多
关键词 Williamson fluid blood flow tapered artery STENOSIS perturbation solution.
原文传递
Wind tunnel test on aerodynamic effect of wind barriers on train-bridge system 被引量:17
18
作者 GUO Wei Wei WANG Yu Jing +1 位作者 XIA He LU Shan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第2期219-225,共7页
To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without b... To investigate the aerodynamic effect of wind barriers on a high-speed train-bridge system,a sectional model test was conducted in a closed-circuit-type wind tunnel.Several different cases,including with and without barriers,with different barrier heights and porosity rates,and with different train arrangements on the bridge were taken into consideration;in addition,the aerodynamic coefficients of the train-bridge system were measured.It is found that the side force and rolling moment coefficients of the vehicle are efficiently reduced by a single-side wind barrier,but for the bridge deck these values are increased.The height and porosity rate of the barrier are two important factors that influence the windbreak effect.Train arrangement on the bridge will considerably influence the aerodynamic properties of the train-bridge system.The side force and rolling moment coefficients of the vehicle at the windward side are larger than at the leeward side. 展开更多
关键词 wind barrier train-bridge system wind tunnel aerodynamic coefficient windbreak effect
原文传递
The effects of slip condition and fluid flow through a channel multiple stenoses on micropolar of non-uniform cross-section
19
作者 K. Vaj ravelu Gurju Awgichew G. Radhakrishnamacharya 《International Journal of Biomathematics》 2015年第4期237-255,共19页
In this paper, steady incompressible micropolar fluid flow through a non-uniform channel with multiple stenoses is considered. Assuming the stenoses to be mild and using the slip boundary condition, the equations gove... In this paper, steady incompressible micropolar fluid flow through a non-uniform channel with multiple stenoses is considered. Assuming the stenoses to be mild and using the slip boundary condition, the equations governing the flow of the proposed model are solved, and closed-form expressions for the flow characteristics (resistance to flow and wall shear stress) are derived. The effects of different parameters on these flow characteristics are analyzed. It is observed that both the resistance to the flow and the wall shear stress increase with the heights of the stenoses and the slip parameter; but decrease with the Darcy number, b^rthermore, the effects of the wall exponent parameter, the cross-viscosity coefficient and the micropolar parameter on the flow characteristics are discussed. 展开更多
关键词 Stenoses slip condition non-uniform channel flow resistance micropolarfluid.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部