期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种动态的主动多分类方法
1
作者 郭金玲 樊东燕 郭虎升 《数据采集与处理》 CSCD 北大核心 2016年第1期152-159,共8页
在面向大数据问题的应用领域中,由于现实世界的多样性和复杂性,经常会遇到大规模的多类别数据挖掘问题,传统的多分类方法一方面存在着超平面不平衡更新的问题,另一方面学习效率较低,对于复杂的多类别数据无法进行高效分类。针对这个问题... 在面向大数据问题的应用领域中,由于现实世界的多样性和复杂性,经常会遇到大规模的多类别数据挖掘问题,传统的多分类方法一方面存在着超平面不平衡更新的问题,另一方面学习效率较低,对于复杂的多类别数据无法进行高效分类。针对这个问题,本文提出了一种改进的动态主动多分类(Dynamical active multiple classification,DYA)方法,该方法通过将死锁、激活等概念引入到主动多分类过程,在主动多分类过程中随着分类器的不断更新,动态地控制样本是否参与主动学习的过程;同时,采用分位计数、轮换学习方式的主动多分类方法,使得多类别的分类器能够得到平衡的学习和更新。实验结果表明,本文提出的动态主动多分类方法有效提高了模型的学习效率和泛化性能。 展开更多
关键词 主动学习 多分类 动态主动多分类 分位计数 轮换学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部