Currently, scant attention has been paid to the theoretical analysis on dynamic response mechanism of the "Dualistic" structure roek slope. The analysis presented here provides insight into the dynamic response of t...Currently, scant attention has been paid to the theoretical analysis on dynamic response mechanism of the "Dualistic" structure roek slope. The analysis presented here provides insight into the dynamic response of the "Dualistie" structure rock slope. By investigating the principle of energy distribution, it is shown that the effect of a joint plays a significant role in slope stability analysis. A dynamic reflection and transmission model (RTM) for the "Dualistic" structure rock slope and explicit dynamic equations are established to analyze the dynamic response of a slope, based on the theory of elastic mechanics and the principle of seismic wave propagation. The theoretical simulation solutions show that the dynamic response of the "Dualistic" structure rock slope (soft-hard) model is greater than that of the "Dualistic" strueture rock slope (hard-soft) model, especially in the slope crest. The magnifying effect of rigid foundation on the dynamic response is more obvious than that of soft foundation. With the amplitude increasing, the cracks could be found in the right slope (soft-hard) crest. The crest failure is firstly observed in the right slope (soft-hard) during the experimental process. The reliability of theoretical model is also investigated by experiment analysis. The conclusions derived in this paper could also be used in future evaluations of Multi-layer rock slopes.展开更多
Densities(ρ) and dynamic viscosities(η) for three binary mixtures of n-decane with 1-pentanol,1-hexanol and1-heptanol are presented at temperatures from 293.15 to 363.15 K and atmospheric pressure over the entire co...Densities(ρ) and dynamic viscosities(η) for three binary mixtures of n-decane with 1-pentanol,1-hexanol and1-heptanol are presented at temperatures from 293.15 to 363.15 K and atmospheric pressure over the entire composition range.The density and viscosity are measured using a vibrating tube densimeter and a cylindrical Couette type rotating viscometer,respectively.Excess molar volumes(V^E),viscosity deviations(△η) and excess Gibbs energy of activation of viscous flow(△G^(*E)) are calculated from the experimental measurements.Intermolecular and structural interactions are indicated by the sign and magnitude of these properties.Partial molar volumes and infinity dilution molar partial volumes are also calculated for each binary system.These results are correlated using Redlich-Kister type equations.展开更多
An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the sup...An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.展开更多
基金financially supported by Project of the National Natural Science Foundation of China (Grant No. 41002126)Project of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2009Z010)
文摘Currently, scant attention has been paid to the theoretical analysis on dynamic response mechanism of the "Dualistic" structure roek slope. The analysis presented here provides insight into the dynamic response of the "Dualistie" structure rock slope. By investigating the principle of energy distribution, it is shown that the effect of a joint plays a significant role in slope stability analysis. A dynamic reflection and transmission model (RTM) for the "Dualistic" structure rock slope and explicit dynamic equations are established to analyze the dynamic response of a slope, based on the theory of elastic mechanics and the principle of seismic wave propagation. The theoretical simulation solutions show that the dynamic response of the "Dualistic" structure rock slope (soft-hard) model is greater than that of the "Dualistic" strueture rock slope (hard-soft) model, especially in the slope crest. The magnifying effect of rigid foundation on the dynamic response is more obvious than that of soft foundation. With the amplitude increasing, the cracks could be found in the right slope (soft-hard) crest. The crest failure is firstly observed in the right slope (soft-hard) during the experimental process. The reliability of theoretical model is also investigated by experiment analysis. The conclusions derived in this paper could also be used in future evaluations of Multi-layer rock slopes.
基金Supported by the National Council of Science and Technology(CONACyT)(SEP-2004-C01-47817)
文摘Densities(ρ) and dynamic viscosities(η) for three binary mixtures of n-decane with 1-pentanol,1-hexanol and1-heptanol are presented at temperatures from 293.15 to 363.15 K and atmospheric pressure over the entire composition range.The density and viscosity are measured using a vibrating tube densimeter and a cylindrical Couette type rotating viscometer,respectively.Excess molar volumes(V^E),viscosity deviations(△η) and excess Gibbs energy of activation of viscous flow(△G^(*E)) are calculated from the experimental measurements.Intermolecular and structural interactions are indicated by the sign and magnitude of these properties.Partial molar volumes and infinity dilution molar partial volumes are also calculated for each binary system.These results are correlated using Redlich-Kister type equations.
基金Project supported by the Hangdian Foundation (No. KYS075608072)the National Natural Science Foundation of China (Nos. 10671187, 10971109)the Program for New Century Excellent Talents in University of China (No. NCET-08-0515)
文摘An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-diinensional integrable Hamiltonian systems, defined over the super- symmetry manifold R^4N{2N with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.