Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone fe...Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.展开更多
The distribution of Al (j) and the structural units distribution of Qi T in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-fie...The distribution of Al (j) and the structural units distribution of Qi T in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-field strength cation relative to Al3+, such as alkaline and alkaline earth metals, Al will be four-coordinated but not six-coordinated. Meanwhile, if there exist a large number of higher-field strength cations such as Si4+ and little lower-field strength cation, six-coordinated aluminum will be formed. The relation of structural units distribution of Qi T with chemical composition shift was also extracted, showing that as Ca2+ exists, the distributions of Qi Si, Qi Al or Qi T have the similar changing trend with the variation of component. Because of high-temperature effect, the Al-tetrahedral units in melts are greatly active and unstable and there exist dynamic transforming equilibria of Al(3)Al(4) and (Al(5))Al(4). The three-coordinated oxygen and charge-compensated bridging oxygen are proposed to explain phenomena of the negative charge redundancy of AlO4 and location of network modifier with charge-compensated function in aluminosilicate melts.展开更多
Based on the theoretical analyses, the dynamic and mathematical models of the system were developed. The models were implemented in the ambit of the Matlab/Simulink environment, and an integrated simulation model was ...Based on the theoretical analyses, the dynamic and mathematical models of the system were developed. The models were implemented in the ambit of the Matlab/Simulink environment, and an integrated simulation model was developed. The dynamic performance of the power shift clutch during engagement and disengagement was studied by using this assembly model. The sliding speed, torque transmitted through the clutch, and the rate at which energy is dissipated during the process were determined. Using this model, the calculation during simulation can be simplified. This lays a foundation for the dynamic performance research on the power train with the power shift clutch, and provides a powerful tool for developing an automatic, electronically controlled transmission.展开更多
The controller design and digital simulation for the hyper velocity kinetic energy missile is investigated. A mathematical model of the trajectory deviation from the line of sight was established, the guidance closed ...The controller design and digital simulation for the hyper velocity kinetic energy missile is investigated. A mathematical model of the trajectory deviation from the line of sight was established, the guidance closed loop was compensated with a phase advance lag corrective network, a selecting algorithm of the attitude control motors used to steer the missile's attitude was presented. In the presence of a wide variety of disturbances the results of digital simulation are satisfactory to circular error probability(CEP) being less than 0 5?m. The steering scheme utilizing attitude control motors as actuators to control the attitude of the missile is feasible.展开更多
In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULI...In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.展开更多
Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent fe...Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent features of the test system affect the dynamic force test are found out. Thus a theoretical foundation is given for the design and error modification to the actual test system.展开更多
In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was estab...In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.展开更多
Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation ...Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.展开更多
A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic syste...A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic system of AT was established by ITI-SimulationX. Simulation results and theoretical design results were compared to confirm the simulation model. Based on the confirmed simulation model, the simulation results of pressure and flow of the hydraulic system were analyzed. The dynamic simulation method is very helpful for designing and analyzing the performance of hydraulic system and further optimization design. The theoretical design method and dynamic simulation model are feasible for the real industrial applications. The research results can be used in hydraulic system design and optimization.展开更多
Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the eq...Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.展开更多
An improved whole model of beam pumping system was built. In the detail, for surface transmission system(STS), a new mathematical model was established considering the influence of some factors on the STS's torsio...An improved whole model of beam pumping system was built. In the detail, for surface transmission system(STS), a new mathematical model was established considering the influence of some factors on the STS's torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string(SRS), an improved mathematical model was built considering the influence of some parameters on the SRS's longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system efficiency is sensitive to motor power, pump diameter, stroke number, ratio of gas and oil, and submergence depth. The simulation results have important significance for improving the efficiency of beam pumping system.展开更多
By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of r...By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.展开更多
Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians pass...Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.展开更多
The evolvement of a vulnerable ecological region is a dynamic process, which is affected by various factors. During the evolvement process, human activities have a decisive effect. The purpose of studying vulnerable e...The evolvement of a vulnerable ecological region is a dynamic process, which is affected by various factors. During the evolvement process, human activities have a decisive effect. The purpose of studying vulnerable ecological region is to control human economic activities and to develop a negative feedback modulation mechanism.This paper established a model of vulnerable ecological region's evolvement by considering four synthetic variables.These synthetic variables are ecological carrying capacity, ecological resilience, economic development intensity, and economic development velocity. Finally, Ongniud Banner and Aohan Banner in North China were taken as study cases to simulate the evolvement processes of vulnerable ecological regions under different conditions of economic development. The results show that human activities have an important influence on the evolvement trend of vulnerable ecological region.展开更多
In this paper, digital simulation techniques for dynamic and transient voltage performance studies, using accurate load and synchronous generator models have been proposed. Particular attention has been paid to the in...In this paper, digital simulation techniques for dynamic and transient voltage performance studies, using accurate load and synchronous generator models have been proposed. Particular attention has been paid to the induction motor load model. Accurate models of voltage supporting devices including OLTC transformer are derived. The system of differential equations based on the above models are converted into linear algebraic equations by use of the trapezoidal approximation formula. These are then written as difference equations to facilitate computational programming. For various contingencies a numerical iterative technique is used to obtain a simulation of the system voltage and angle profile. Various contingency tests on a 9-bus sample system and a 22-bus system prove the applicability of the package.展开更多
Experiment and dynamic simulation were combined to obtain the loads on bicycle frame. A dynamic model of body-bicycle system was built in ADAMS. Then the body gestures under different riding conditions were captured b...Experiment and dynamic simulation were combined to obtain the loads on bicycle frame. A dynamic model of body-bicycle system was built in ADAMS. Then the body gestures under different riding conditions were captured by a motion analysis system. Dynamic simulation was carried out after the data of body motions were input into the simulation system in ADAMS and a series of loads that the body applied on head tube, seat pillar and bottom bracket were obtained. The results show that the loads on flame and their distribution are apparently different under various riding conditions. Finally, finite element analysis was done in ANSYS, which showed that the stress and its distribution on frame were apparently different when the flame was loaded according to the bicycle testing standard and simulation respectively. An efficient way to obtain load on bicycle flame accurately was proposed, which is sig- nificant for the safety of cycling and will also be the basis for the bicycle design of digitalization, lightening and cus- tomization.展开更多
In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigi...In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigid body,a six degrees-of-freedom(DOF)dynamic model of a parafoil system including three DOF for translational motion and three DOF for rotational motion,is established according to the K rchhoff motion equation.Since the flexible winged paafoil system flying at low altitude is more susceptibleto winds,the motion characteristics of the parafoil system Wth and Wthout winds are simulated and analyzed.Furthermore,the ardropm test is used to further verify the model.The comparison results show that the simulation trajectory roughly overlaps with the actual flight track.The horzontnl velocity of the simulation model is in good accordance with the airdrop test,with a deviation less than0.5m/s,while its simulated vertical velocity fuctuates slightly under the infuence of the wind,and shows a similar trend to the ardrop test.It is concludedthat the established model can well describe the characteristics of the parafoil system.展开更多
The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two...The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two measurement patterns are compared and application of their measurement data on hypoid gear's quality management is analyzed. How to use these measurement data to simulate the dynamical performance of hypoid gear is researched, and the intelligent predicton of the dynamical performance indexes of contact spot, root stress, vibration exciting forces and load distribution and hertz contact stress on the tooth surface are carried out. This research work has an important guiding sense to design and ma- chine hypoid gear with low vibration and noise.展开更多
A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulat...A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulation method controls the six degrees of freedom of the impeller using the user-defined functions(UDF)program so that it can only rotate under the impact of fluid.The impeller speed can be calculated in real-time,and the inlet speed can be set with time to obtain the dynamic performance of the turbine flow sensors.Based on this simulation method,three turbine flow sensors with different diameters were simulated,and the reliability of the simulation method was verified by both steady-state and unsteady-state experiments.The results show that the trend of meter factor with flow rate acquired from the simulation is close to the experimental results.The deviation between the simulation and experiment results is low,with a maximum deviation of 2.88%.In the unsteady simulation study,the impeller speed changed with the inlet velocity of the turbine flow sensor,showing good tracking performance.The passive simulation method can be used to predict the dynamic performance of the turbine flow sensor.展开更多
文摘Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.
文摘The distribution of Al (j) and the structural units distribution of Qi T in calcium aluminosilicate melts were studied by means of molecular dynamics simulation. The results show that provided there exists lower-field strength cation relative to Al3+, such as alkaline and alkaline earth metals, Al will be four-coordinated but not six-coordinated. Meanwhile, if there exist a large number of higher-field strength cations such as Si4+ and little lower-field strength cation, six-coordinated aluminum will be formed. The relation of structural units distribution of Qi T with chemical composition shift was also extracted, showing that as Ca2+ exists, the distributions of Qi Si, Qi Al or Qi T have the similar changing trend with the variation of component. Because of high-temperature effect, the Al-tetrahedral units in melts are greatly active and unstable and there exist dynamic transforming equilibria of Al(3)Al(4) and (Al(5))Al(4). The three-coordinated oxygen and charge-compensated bridging oxygen are proposed to explain phenomena of the negative charge redundancy of AlO4 and location of network modifier with charge-compensated function in aluminosilicate melts.
文摘Based on the theoretical analyses, the dynamic and mathematical models of the system were developed. The models were implemented in the ambit of the Matlab/Simulink environment, and an integrated simulation model was developed. The dynamic performance of the power shift clutch during engagement and disengagement was studied by using this assembly model. The sliding speed, torque transmitted through the clutch, and the rate at which energy is dissipated during the process were determined. Using this model, the calculation during simulation can be simplified. This lays a foundation for the dynamic performance research on the power train with the power shift clutch, and provides a powerful tool for developing an automatic, electronically controlled transmission.
文摘The controller design and digital simulation for the hyper velocity kinetic energy missile is investigated. A mathematical model of the trajectory deviation from the line of sight was established, the guidance closed loop was compensated with a phase advance lag corrective network, a selecting algorithm of the attitude control motors used to steer the missile's attitude was presented. In the presence of a wide variety of disturbances the results of digital simulation are satisfactory to circular error probability(CEP) being less than 0 5?m. The steering scheme utilizing attitude control motors as actuators to control the attitude of the missile is feasible.
文摘In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.
文摘Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent features of the test system affect the dynamic force test are found out. Thus a theoretical foundation is given for the design and error modification to the actual test system.
基金Projects (11202125, 61175038) supported by the National Natural Science Foundation of China
文摘In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.
基金Supported by Supported by National High Technology Research and Development Program of China(2006AA10A039)Special Funding Projects for Research in Agricultural Public Service Sectors (200803037)Technology Development Program of Jilin Province (2006BAD02A10-6-6)~~
文摘Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.
基金Project(911901204) supported by Youth Innovation Foundation of Beijing University of Aeronautics and Astronautics
文摘A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic system of AT was established by ITI-SimulationX. Simulation results and theoretical design results were compared to confirm the simulation model. Based on the confirmed simulation model, the simulation results of pressure and flow of the hydraulic system were analyzed. The dynamic simulation method is very helpful for designing and analyzing the performance of hydraulic system and further optimization design. The theoretical design method and dynamic simulation model are feasible for the real industrial applications. The research results can be used in hydraulic system design and optimization.
基金Supported by the National Natural Science Foundation of China(61072127) the Outstanding Young Innovative Personnel Project of Guangdong Colleges(LYM08098)
文摘Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.
基金Projects(50974108,51174175) supported by the National Natural Science Foundation of China
文摘An improved whole model of beam pumping system was built. In the detail, for surface transmission system(STS), a new mathematical model was established considering the influence of some factors on the STS's torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string(SRS), an improved mathematical model was built considering the influence of some parameters on the SRS's longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system efficiency is sensitive to motor power, pump diameter, stroke number, ratio of gas and oil, and submergence depth. The simulation results have important significance for improving the efficiency of beam pumping system.
文摘By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.
基金Project(70972041)supported by the National Natural Science Foundation of ChinaProject(20100009110010)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(2011YJS246)supported by Fundamental Research Funds for the Central Universities of China
文摘Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301052)the 10th Five-year National Key Technology R&D Program of Ministry of Science and Technology (No. 2001BA606A-01)
文摘The evolvement of a vulnerable ecological region is a dynamic process, which is affected by various factors. During the evolvement process, human activities have a decisive effect. The purpose of studying vulnerable ecological region is to control human economic activities and to develop a negative feedback modulation mechanism.This paper established a model of vulnerable ecological region's evolvement by considering four synthetic variables.These synthetic variables are ecological carrying capacity, ecological resilience, economic development intensity, and economic development velocity. Finally, Ongniud Banner and Aohan Banner in North China were taken as study cases to simulate the evolvement processes of vulnerable ecological regions under different conditions of economic development. The results show that human activities have an important influence on the evolvement trend of vulnerable ecological region.
文摘In this paper, digital simulation techniques for dynamic and transient voltage performance studies, using accurate load and synchronous generator models have been proposed. Particular attention has been paid to the induction motor load model. Accurate models of voltage supporting devices including OLTC transformer are derived. The system of differential equations based on the above models are converted into linear algebraic equations by use of the trapezoidal approximation formula. These are then written as difference equations to facilitate computational programming. For various contingencies a numerical iterative technique is used to obtain a simulation of the system voltage and angle profile. Various contingency tests on a 9-bus sample system and a 22-bus system prove the applicability of the package.
基金Supported by Special Fund Project for Technology Innovation of Tianjin (No. 10FDZDGX00500)Tianjin Product Quality Inspection Technology Research Institute (No. 11-03)
文摘Experiment and dynamic simulation were combined to obtain the loads on bicycle frame. A dynamic model of body-bicycle system was built in ADAMS. Then the body gestures under different riding conditions were captured by a motion analysis system. Dynamic simulation was carried out after the data of body motions were input into the simulation system in ADAMS and a series of loads that the body applied on head tube, seat pillar and bottom bracket were obtained. The results show that the loads on flame and their distribution are apparently different under various riding conditions. Finally, finite element analysis was done in ANSYS, which showed that the stress and its distribution on frame were apparently different when the flame was loaded according to the bicycle testing standard and simulation respectively. An efficient way to obtain load on bicycle flame accurately was proposed, which is sig- nificant for the safety of cycling and will also be the basis for the bicycle design of digitalization, lightening and cus- tomization.
基金The National Natural Science Foundation of China(No.61273138,61573197)the National Key Technology R&D Program(No.2015BAK06B04)+1 种基金the Key Fund of Tianjin(No.14JCZDJC39300)the Key Technologies R&D Program of Tianjin(No.14ZCZDSF00022)
文摘In order to better study the dynamic characteristics and the control strategy of parafoil systems,considering the effect of flap deflection as the control mechanism and regarding the parafoil and the payload as a rigid body,a six degrees-of-freedom(DOF)dynamic model of a parafoil system including three DOF for translational motion and three DOF for rotational motion,is established according to the K rchhoff motion equation.Since the flexible winged paafoil system flying at low altitude is more susceptibleto winds,the motion characteristics of the parafoil system Wth and Wthout winds are simulated and analyzed.Furthermore,the ardropm test is used to further verify the model.The comparison results show that the simulation trajectory roughly overlaps with the actual flight track.The horzontnl velocity of the simulation model is in good accordance with the airdrop test,with a deviation less than0.5m/s,while its simulated vertical velocity fuctuates slightly under the infuence of the wind,and shows a similar trend to the ardrop test.It is concludedthat the established model can well describe the characteristics of the parafoil system.
基金National Natural Science Foundation of China(No. 50976108)
文摘The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two measurement patterns are compared and application of their measurement data on hypoid gear's quality management is analyzed. How to use these measurement data to simulate the dynamical performance of hypoid gear is researched, and the intelligent predicton of the dynamical performance indexes of contact spot, root stress, vibration exciting forces and load distribution and hertz contact stress on the tooth surface are carried out. This research work has an important guiding sense to design and ma- chine hypoid gear with low vibration and noise.
基金The National Natural Science Foundation of China(No.62173122)the Hebei Key Project of Natural Science Foundation(No.F2021201031)。
文摘A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulation method controls the six degrees of freedom of the impeller using the user-defined functions(UDF)program so that it can only rotate under the impact of fluid.The impeller speed can be calculated in real-time,and the inlet speed can be set with time to obtain the dynamic performance of the turbine flow sensors.Based on this simulation method,three turbine flow sensors with different diameters were simulated,and the reliability of the simulation method was verified by both steady-state and unsteady-state experiments.The results show that the trend of meter factor with flow rate acquired from the simulation is close to the experimental results.The deviation between the simulation and experiment results is low,with a maximum deviation of 2.88%.In the unsteady simulation study,the impeller speed changed with the inlet velocity of the turbine flow sensor,showing good tracking performance.The passive simulation method can be used to predict the dynamic performance of the turbine flow sensor.