Dynamic detection based on optics sensors and ranging radars is a new method to detect the luminous intensity of flight aid lights. The optics sensors can get the illumination information of each light, the ranging ra...Dynamic detection based on optics sensors and ranging radars is a new method to detect the luminous intensity of flight aid lights. The optics sensors can get the illumination information of each light, the ranging radar gets the distance information, and then data amalgamation technology is used to compute the luminous intensity of each light. A method to modify the errors of this dynamic detection system is presented. It avoids the accumulation error and measurement carrier’s excursion error by using peak value detection based on optics sensors to estimate the accurate position of each light, then to modify the lights’ lengthways distance information and transverse position information. The performance of the detection and ranging system is validated by some experiments and shown in pictures.展开更多
The marine area of Japan, including territorial waters and the exclusive economic zone, is the sixth largest in the world at about 4,470,000 km2. Therefore, it is becoming necessary to establish appropriate means of t...The marine area of Japan, including territorial waters and the exclusive economic zone, is the sixth largest in the world at about 4,470,000 km2. Therefore, it is becoming necessary to establish appropriate means of transportation other than ships in order to utilize the area efficiently. In this respect, ultra-light seaplanes are attracting attention from the viewpoint of protecting the natural environment. Accordingly, JRPS (Japan Reinforced Plastics Society) is currently developing FRP (fiber-reinforced plastic) floats for such planes. In this study, we conducted simulations of seaplane behavior during alighting by using the smoothed particle hydrodynamics method, which is one of the functions in the PAM-CRASH solver, and we present the observed trend in the vertical acceleration of the floats as a first step toward deriving the impact force from analytical data.展开更多
基金Science and Technology Development Project Item of Tianjin(06YFGZGX00800)Science and Technology Item of CAAC(MY0517416)
文摘Dynamic detection based on optics sensors and ranging radars is a new method to detect the luminous intensity of flight aid lights. The optics sensors can get the illumination information of each light, the ranging radar gets the distance information, and then data amalgamation technology is used to compute the luminous intensity of each light. A method to modify the errors of this dynamic detection system is presented. It avoids the accumulation error and measurement carrier’s excursion error by using peak value detection based on optics sensors to estimate the accurate position of each light, then to modify the lights’ lengthways distance information and transverse position information. The performance of the detection and ranging system is validated by some experiments and shown in pictures.
文摘The marine area of Japan, including territorial waters and the exclusive economic zone, is the sixth largest in the world at about 4,470,000 km2. Therefore, it is becoming necessary to establish appropriate means of transportation other than ships in order to utilize the area efficiently. In this respect, ultra-light seaplanes are attracting attention from the viewpoint of protecting the natural environment. Accordingly, JRPS (Japan Reinforced Plastics Society) is currently developing FRP (fiber-reinforced plastic) floats for such planes. In this study, we conducted simulations of seaplane behavior during alighting by using the smoothed particle hydrodynamics method, which is one of the functions in the PAM-CRASH solver, and we present the observed trend in the vertical acceleration of the floats as a first step toward deriving the impact force from analytical data.