对重大工程结构进行强地震作用下的连续倒塌全过程分析并建立相应的设计与控制方法,已成为当前地震工程领域的发展趋势。目前,由于数值求解方面的困难,绝大多数针对极端作用下的结构连续倒塌的研究止步于数值临界状态的界定,在分析过程...对重大工程结构进行强地震作用下的连续倒塌全过程分析并建立相应的设计与控制方法,已成为当前地震工程领域的发展趋势。目前,由于数值求解方面的困难,绝大多数针对极端作用下的结构连续倒塌的研究止步于数值临界状态的界定,在分析过程中不能实时地对结构构件的损伤状态进行监测并根据构件的损伤状态对分析模型进行修改。为了实现连续倒塌过程中构件的逐步失效,在OpenSees程序中,基于Beam with Hinges Element构建了端部带附属节点的Beam with Hinges Element,并根据构件失效情况对附属节点的多点约束进行控制。采用三次静力凝聚方法和Newmark-beta法,给出了对此改进建模技术可信的理论背景,方法的准确性通过一个简单框架算例得到了验证。展开更多
The effect of vertical internal baffles on the particle mixing and graindrying characteristics in a batch fluidized bed column is investigated. Experimental work wascarried out in a 3m high rectangular fluidized bed d...The effect of vertical internal baffles on the particle mixing and graindrying characteristics in a batch fluidized bed column is investigated. Experimental work wascarried out in a 3m high rectangular fluidized bed dryer of cross sectional area of 0.15 m x 0.61 mat different operating conditions using paddy, a group D particle, as the fluidizing material. Theresults of the study showed that the fluidized bed dryer system with vertical internal baffles gavebetter particle mixing effect in the bed of particles than that without vertical internal baffles.This is due to the fact that the vertical internal baffle act as gas bubble breakers by breaking upthe large gas bubbles into smaller ones. The smaller bubbles cause a more vigorous mixing in the bedof particles before finally erupting at the bed surface. This improves the contacting efficiencyand enhanced the heat and mass transfer of the fluidized bed system. Thus a higher drying rate wasobtained in the falling rate period because the higher contacting efficiency increases theevaporation rate at the particle surface. However, the drying rate in the diffusion region showslittle improvement because the moisture diffusivity does not depend on the contacting efficiency.The fluidized bed dryer with vertical internal baffles could therefore be used in the initial rapiddrying stage in a two stage drying strategy for paddy. The insertion of vertical internal bafflesinto a fluidized bed system improves the processing of Group D particles in a fluidized bed systemespecially if the system is large in scale.展开更多
The environmental impact caused by local people (ecological footprint of consumption, EFc) and the actual environmental impact that the ecosystem burdens (ecological footprint of production, EFp) in West Jilin Pro...The environmental impact caused by local people (ecological footprint of consumption, EFc) and the actual environmental impact that the ecosystem burdens (ecological footprint of production, EFp) in West Jilin Province, Northeast China from 1986 to 2006 were evaluated by using ecological footprint (EF) method. And the major driving forces of EFc and EFp were analyzed by STIRPAT model. Both EFc and EFp showed increasing trends in 1986-2006, accompanied by decreasing ecological deficits but expanding ecological overshoots. Population (P), GDP per capita (A1), quadratic term of GDP per capita (A2), urbanization (Tα1), and quadratic term of urbanization (Ta2) were important influencing factors of EFc, among which Tα2 and Tα1 were the most dominate driving forces of EFc. A1, A2 and Tα2 were important influencing factors of EFp, among which A2 and A1 were the most dominate driving forces of EFp. In 1986-2006, the classical Environmental Kuznets Curve hypothesis did not exist between A2 and EF (both EFc and EFp), but did between Tα2 and EF. The results indicate that enhancing the urbanization process and diversifying economic sources is one of the most effective ways to reduce the environmental impact of West Jilin Province. Moreover, importance should be attached to improve the eco-efficiency of resource exploitation and consumption.展开更多
This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a ...This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.展开更多
This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and bett...This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and better understand the continental dynamic system. For this purpose, here we conduct a multi-disciplinary investigation and combine it with the previous studies to reas- sess the tectonics and evolution of SCC and propose that the tectonic framework of the continent comprises two blocks, three types of tectonic units, four deformation systems, and four evolutionary stages with distinctive mechanism and tectonic characteris- tics since the Neoproterozoic. The four evolutionary stages are: (1) The amalgamation and break-up of the Neoproterozoic plates, typically the intracontinental rifting. (2) The early Paleozoic and Mesozoic intracontinental orogeny confined by plate tectonics, forming two composite tectonic domains. (3) The parallel operation of the Yangtze cratonization and intracontinental orogeny, and multi-phase reactivation of the Yangtze craton. (4) The association and differentiation evolution of plate tectonics and intraconti- nental tectonics, and the dynamic characteristics under the Meso-Cenozoic modem global plate tectonic regime.展开更多
文摘对重大工程结构进行强地震作用下的连续倒塌全过程分析并建立相应的设计与控制方法,已成为当前地震工程领域的发展趋势。目前,由于数值求解方面的困难,绝大多数针对极端作用下的结构连续倒塌的研究止步于数值临界状态的界定,在分析过程中不能实时地对结构构件的损伤状态进行监测并根据构件的损伤状态对分析模型进行修改。为了实现连续倒塌过程中构件的逐步失效,在OpenSees程序中,基于Beam with Hinges Element构建了端部带附属节点的Beam with Hinges Element,并根据构件失效情况对附属节点的多点约束进行控制。采用三次静力凝聚方法和Newmark-beta法,给出了对此改进建模技术可信的理论背景,方法的准确性通过一个简单框架算例得到了验证。
文摘The effect of vertical internal baffles on the particle mixing and graindrying characteristics in a batch fluidized bed column is investigated. Experimental work wascarried out in a 3m high rectangular fluidized bed dryer of cross sectional area of 0.15 m x 0.61 mat different operating conditions using paddy, a group D particle, as the fluidizing material. Theresults of the study showed that the fluidized bed dryer system with vertical internal baffles gavebetter particle mixing effect in the bed of particles than that without vertical internal baffles.This is due to the fact that the vertical internal baffle act as gas bubble breakers by breaking upthe large gas bubbles into smaller ones. The smaller bubbles cause a more vigorous mixing in the bedof particles before finally erupting at the bed surface. This improves the contacting efficiencyand enhanced the heat and mass transfer of the fluidized bed system. Thus a higher drying rate wasobtained in the falling rate period because the higher contacting efficiency increases theevaporation rate at the particle surface. However, the drying rate in the diffusion region showslittle improvement because the moisture diffusivity does not depend on the contacting efficiency.The fluidized bed dryer with vertical internal baffles could therefore be used in the initial rapiddrying stage in a two stage drying strategy for paddy. The insertion of vertical internal bafflesinto a fluidized bed system improves the processing of Group D particles in a fluidized bed systemespecially if the system is large in scale.
基金Under the auspices of Major State Basic Research Development Program of China(No.2004CB418507)
文摘The environmental impact caused by local people (ecological footprint of consumption, EFc) and the actual environmental impact that the ecosystem burdens (ecological footprint of production, EFp) in West Jilin Province, Northeast China from 1986 to 2006 were evaluated by using ecological footprint (EF) method. And the major driving forces of EFc and EFp were analyzed by STIRPAT model. Both EFc and EFp showed increasing trends in 1986-2006, accompanied by decreasing ecological deficits but expanding ecological overshoots. Population (P), GDP per capita (A1), quadratic term of GDP per capita (A2), urbanization (Tα1), and quadratic term of urbanization (Ta2) were important influencing factors of EFc, among which Tα2 and Tα1 were the most dominate driving forces of EFc. A1, A2 and Tα2 were important influencing factors of EFp, among which A2 and A1 were the most dominate driving forces of EFp. In 1986-2006, the classical Environmental Kuznets Curve hypothesis did not exist between A2 and EF (both EFc and EFp), but did between Tα2 and EF. The results indicate that enhancing the urbanization process and diversifying economic sources is one of the most effective ways to reduce the environmental impact of West Jilin Province. Moreover, importance should be attached to improve the eco-efficiency of resource exploitation and consumption.
文摘This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.
基金supported by the special grant of Ministry of Science and Technology of the People’s Republic of China for State Key Laboratory of Continental Dynamics,Northwest University,the key research project of Sinopec Group(Grant No.YPH08012)the National Natural Science Foundation of China(Grant Nos.41190072,41190073,41190074,41190070)
文摘This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and better understand the continental dynamic system. For this purpose, here we conduct a multi-disciplinary investigation and combine it with the previous studies to reas- sess the tectonics and evolution of SCC and propose that the tectonic framework of the continent comprises two blocks, three types of tectonic units, four deformation systems, and four evolutionary stages with distinctive mechanism and tectonic characteris- tics since the Neoproterozoic. The four evolutionary stages are: (1) The amalgamation and break-up of the Neoproterozoic plates, typically the intracontinental rifting. (2) The early Paleozoic and Mesozoic intracontinental orogeny confined by plate tectonics, forming two composite tectonic domains. (3) The parallel operation of the Yangtze cratonization and intracontinental orogeny, and multi-phase reactivation of the Yangtze craton. (4) The association and differentiation evolution of plate tectonics and intraconti- nental tectonics, and the dynamic characteristics under the Meso-Cenozoic modem global plate tectonic regime.