Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to...Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.展开更多
This paper deals with the jointed decision question on ordering and pricing for a short-life-cycle product under stochastic multiplicative demand depended selling price. According to the marketing practices, which ret...This paper deals with the jointed decision question on ordering and pricing for a short-life-cycle product under stochastic multiplicative demand depended selling price. According to the marketing practices, which retailers sell their products in different periods with the different marketing policies, we depict the jointed decision question with a stochastic dynamic programming model from the view of the centralized system. Then, we prove that the expected profit function are concave on decision vectors respectively, and develop the decision method for ordering and pricing. Lastly, we design the iterative search arithmetic to find the optimal decision vectors.展开更多
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61521003)The National Key R&D Program of China (No.2016YFB0800101)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (No.61602509)Henan Province Key Technologies R&D Program of China(No.172102210615)
文摘Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.
基金This research is partly supported by National Natural Science Foundation of China (70473037), the Innovation Fund for PhD Candidate of NUAA(4003-019010), and the Science and Technology Foundation of Henan Education Committee(2006120004).
文摘This paper deals with the jointed decision question on ordering and pricing for a short-life-cycle product under stochastic multiplicative demand depended selling price. According to the marketing practices, which retailers sell their products in different periods with the different marketing policies, we depict the jointed decision question with a stochastic dynamic programming model from the view of the centralized system. Then, we prove that the expected profit function are concave on decision vectors respectively, and develop the decision method for ordering and pricing. Lastly, we design the iterative search arithmetic to find the optimal decision vectors.