期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法
被引量:
10
1
作者
黄新波
高玉菡
+3 位作者
张烨
赵隆
伍逸群
孙苏珍
《电力自动化设备》
EI
CSCD
北大核心
2022年第4期203-209,共7页
针对相近色干扰、不同光照条件下玻璃绝缘子颜色特征不明显而无法准确识别的问题,提出一种基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法。首先,提出一种联合分量灰度化算法,通过补偿玻璃绝缘子目标区域的颜色特征实现目...
针对相近色干扰、不同光照条件下玻璃绝缘子颜色特征不明显而无法准确识别的问题,提出一种基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法。首先,提出一种联合分量灰度化算法,通过补偿玻璃绝缘子目标区域的颜色特征实现目标增强;然后,在均匀分块的基础上,采用动态分块阈值进行玻璃绝缘子图像粗分割,并结合玻璃绝缘子的颜色和空间信息等多尺度高维特征,提出一种双尺度分类卷积神经网络算法实现玻璃绝缘子图像细分割;最后,将细分割得到的所有子图像进行合并,实现复杂背景下玻璃绝缘子目标的准确识别。实验结果表明,所提算法能对图像中存在相近色干扰、光照变化影响的玻璃绝缘子目标进行精准识别,且其在Dice参数、杰卡德系数2项识别指标上均达到90%以上,平均识别准确率高达92%。
展开更多
关键词
玻璃绝缘子
联合分量灰度化算法
动态分块阈值分割
双尺度分类卷积神经网络
深度学习
下载PDF
职称材料
题名
基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法
被引量:
10
1
作者
黄新波
高玉菡
张烨
赵隆
伍逸群
孙苏珍
机构
西安工程大学电子信息学院
出处
《电力自动化设备》
EI
CSCD
北大核心
2022年第4期203-209,共7页
基金
陕西省自然科学基础研究计划-一般项目(青年)(2019JQ-843)
西安市科技计划项目(GXYD7.12)
陕西省教育厅科研计划项目(21JK0661)。
文摘
针对相近色干扰、不同光照条件下玻璃绝缘子颜色特征不明显而无法准确识别的问题,提出一种基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法。首先,提出一种联合分量灰度化算法,通过补偿玻璃绝缘子目标区域的颜色特征实现目标增强;然后,在均匀分块的基础上,采用动态分块阈值进行玻璃绝缘子图像粗分割,并结合玻璃绝缘子的颜色和空间信息等多尺度高维特征,提出一种双尺度分类卷积神经网络算法实现玻璃绝缘子图像细分割;最后,将细分割得到的所有子图像进行合并,实现复杂背景下玻璃绝缘子目标的准确识别。实验结果表明,所提算法能对图像中存在相近色干扰、光照变化影响的玻璃绝缘子目标进行精准识别,且其在Dice参数、杰卡德系数2项识别指标上均达到90%以上,平均识别准确率高达92%。
关键词
玻璃绝缘子
联合分量灰度化算法
动态分块阈值分割
双尺度分类卷积神经网络
深度学习
Keywords
glass insulator
joint component grayscale algorithm
dynamic block threshold segmentation
dualscale classification convolutional neural network
deep learning
分类号
TM216.4 [一般工业技术—材料科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法
黄新波
高玉菡
张烨
赵隆
伍逸群
孙苏珍
《电力自动化设备》
EI
CSCD
北大核心
2022
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部