针对多分类器系统设计中最优子集选择效率低下、集成方法缺乏灵活性等问题,提出了分类器的动态选择与循环集成方法(Dynamic selection and circulating combination,DSCC).该方法利用不同分类器模型之间的互补性,动态选择出对目标有较...针对多分类器系统设计中最优子集选择效率低下、集成方法缺乏灵活性等问题,提出了分类器的动态选择与循环集成方法(Dynamic selection and circulating combination,DSCC).该方法利用不同分类器模型之间的互补性,动态选择出对目标有较高识别率的分类器组合,使参与集成的分类器数量能够随识别目标的复杂程度而自适应地变化,并根据可信度实现系统的循环集成.在手写体数字识别实验中,与其他常用的分类器选择方法相比,所提出的方法灵活高效,识别率更高.展开更多
针对基于约束得分的特征选择容易受成对约束的组成和基数影响的问题,提出了一种基于约束得分的动态集成选择算法(dynamic ensemble selection based on bagging constraint score,BCS-DES)。该算法将bagging约束得分(bagging constraint...针对基于约束得分的特征选择容易受成对约束的组成和基数影响的问题,提出了一种基于约束得分的动态集成选择算法(dynamic ensemble selection based on bagging constraint score,BCS-DES)。该算法将bagging约束得分(bagging constraint score,BCS)引入动态集成选择算法,通过将样本空间划分为不同的区域,使用多种群并行遗传算法为不同测试样本选择局部最优的分类集成,达到提高分类精度的目的。在UCI实验数据集上进行的实验表明,BCS-DES算法较现有的特征选择算法受成对约束组成和基数影响更小,效果更好。展开更多
文摘针对多分类器系统设计中最优子集选择效率低下、集成方法缺乏灵活性等问题,提出了分类器的动态选择与循环集成方法(Dynamic selection and circulating combination,DSCC).该方法利用不同分类器模型之间的互补性,动态选择出对目标有较高识别率的分类器组合,使参与集成的分类器数量能够随识别目标的复杂程度而自适应地变化,并根据可信度实现系统的循环集成.在手写体数字识别实验中,与其他常用的分类器选择方法相比,所提出的方法灵活高效,识别率更高.
文摘针对基于约束得分的特征选择容易受成对约束的组成和基数影响的问题,提出了一种基于约束得分的动态集成选择算法(dynamic ensemble selection based on bagging constraint score,BCS-DES)。该算法将bagging约束得分(bagging constraint score,BCS)引入动态集成选择算法,通过将样本空间划分为不同的区域,使用多种群并行遗传算法为不同测试样本选择局部最优的分类集成,达到提高分类精度的目的。在UCI实验数据集上进行的实验表明,BCS-DES算法较现有的特征选择算法受成对约束组成和基数影响更小,效果更好。