In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using...In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.展开更多
The dynamic mechanical property of concrete is one of the key parameters,which greatly influences durability of infrastructures subjected to continuous heavy loading,such as girder and track slab of high-speed railway...The dynamic mechanical property of concrete is one of the key parameters,which greatly influences durability of infrastructures subjected to continuous heavy loading,such as girder and track slab of high-speed railway foundation structure.This paper reports serials of experiments designed to investigate the deterioration of dynamic mechanical properties of different concretes under fatigue loading condition.Four parameters including relative dynamic elastic modulus(RDEM),relative dynamic shear modulus(RDSM),relative compressive strength(RCS)and water absorption(WA)of concrete were evaluated to assess the dynamic properties and microstructures of concretes.Results show that the fatigue stress levels and fatigue cycle durations significantly influence the dynamic mechanical properties of concrete including dynamic elastic modulus and dynamic shear modulus.Addition of proper mineral admixture can improve the dynamic mechanical characteristics of concrete and increase its resistance against the fatigue loading effect.Keeping the amount of mineral admixture in concrete constant,its dynamic mechanical property with fly ash is lower than that with fly ash and silica fume.The water absorption in concrete,which is an indirect parameter reflecting capillary porosity,increases evidently after bearing fatigue-loading.There is a close correlation between the deterioration of dynamic mechanical property and the increasing of water absorption of concrete.This indicates that the damage of microstructure of concrete subjected to fatigue loading is the indispensable reason for the decay of its dynamic mechanical performance.展开更多
基金financially supported by the Shandong Natural Science Foundation (ZR2009FL020)the Shandong Transportation Innovation Foundation (2010Y20)
文摘In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036201)
文摘The dynamic mechanical property of concrete is one of the key parameters,which greatly influences durability of infrastructures subjected to continuous heavy loading,such as girder and track slab of high-speed railway foundation structure.This paper reports serials of experiments designed to investigate the deterioration of dynamic mechanical properties of different concretes under fatigue loading condition.Four parameters including relative dynamic elastic modulus(RDEM),relative dynamic shear modulus(RDSM),relative compressive strength(RCS)and water absorption(WA)of concrete were evaluated to assess the dynamic properties and microstructures of concretes.Results show that the fatigue stress levels and fatigue cycle durations significantly influence the dynamic mechanical properties of concrete including dynamic elastic modulus and dynamic shear modulus.Addition of proper mineral admixture can improve the dynamic mechanical characteristics of concrete and increase its resistance against the fatigue loading effect.Keeping the amount of mineral admixture in concrete constant,its dynamic mechanical property with fly ash is lower than that with fly ash and silica fume.The water absorption in concrete,which is an indirect parameter reflecting capillary porosity,increases evidently after bearing fatigue-loading.There is a close correlation between the deterioration of dynamic mechanical property and the increasing of water absorption of concrete.This indicates that the damage of microstructure of concrete subjected to fatigue loading is the indispensable reason for the decay of its dynamic mechanical performance.