期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于电液比例伺服复合加载及迭代学习控制的合成绝缘子疲劳试验方法 被引量:3
1
作者 汪首坤 王军政 +1 位作者 赵江波 彭建敏 《机械工程学报》 EI CAS CSCD 北大核心 2013年第22期192-198,共7页
为模拟合成绝缘子的微风振动状态,实现其疲劳试验过程,研究电液比例伺服复合加载技术。针对合成绝缘子的实际负载工况,设计出一种复合式电液伺服加载系统,包括静态比例加载和动态伺服加载两部分,分析系统工作原理,建立伺服加载的数学模... 为模拟合成绝缘子的微风振动状态,实现其疲劳试验过程,研究电液比例伺服复合加载技术。针对合成绝缘子的实际负载工况,设计出一种复合式电液伺服加载系统,包括静态比例加载和动态伺服加载两部分,分析系统工作原理,建立伺服加载的数学模型,设计出基于PD型迭代学习的加载控制方法,实现动态加载力的精确控制,并采用AMESim和Matlab进行联合数字仿真。仿真和实际试验结果均验证了所加载方法和控制方法是正确可行的,能够取得高精度的控制效果。根据所提的加载方法和控制方法,已研制出相应的合成绝缘子电液加载系统,其静态加载力可达150 kN,动态加载力幅值可达20 kN,加载精度达到了0.5 kN,加载频率最高可达100 Hz,连续振动次数达到3千万次。 展开更多
关键词 合成绝缘子 电液伺服 迭代学习控制 动态加载力
下载PDF
Crack propagation mechanism of compression-shear rock under static-dynamic loading and seepage water pressure 被引量:10
2
作者 周志华 曹平 叶洲元 《Journal of Central South University》 SCIE EI CAS 2014年第4期1565-1570,共6页
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor... To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing. 展开更多
关键词 static-dynamic loading seepage pressure stress intensity factor initiation of crack
下载PDF
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
3
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
Consolidation and dynamics of 3D unsaturated porous seabed under rigid caisson breakwater loaded by hydrostatic pressure and wave 被引量:4
4
作者 YE JianHong JENG DongSheng CHAN A H C 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第8期2362-2376,共15页
In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time i... In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time integration.The developed 3D FEM soil model is a part of the coupled model PORO-WSSI 3D for 3D wave-seabed-marine structures interaction problem,and is validated by the analytical solution proposed by Wang(2000) for a laterally infinite seabed loaded by a uniform force.By adopting the developed 3D soil model,the consolidation of seabed under a caisson breakwater and hydrostatic pressure is investigated.The numerical results show that the caisson breakwater built on seabed has very significant effect on the stresses/displacements fields in the seabed foundation after the transient deformation and primary consolidation are completed.The parametric study indicates that the Young's modulus E of seabed is the most important parameter to affect the settlement of breakwater,and the displacement fields in seabed foundation.Taking the consolidation status as the initial condition,the interaction between ocean wave,caisson breakwater and seabed foundation is briefly investigated.The 3D ocean wave is determined by solving the Navier-Stokes equations with finite volume method(FVM).The numerical results indicate that there is intensive interaction between oceean wave, caisson breakwater and seabed foundation; and the breakwater indeed can effectively block the wave energy propagating to the coastline. 展开更多
关键词 CONSOLIDATION wave-seabed-breakwater interaction unsaturated seabed BREAKWATER Biot's theory Navier-Stokes equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部