期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于多种群多模型协同进化的粒子群优化算法 被引量:6
1
作者 徐冰纯 葛洪伟 王燕燕 《计算机工程》 CAS CSCD 2013年第5期200-203,208,共5页
为克服标准粒子群优化(PSO)算法易陷入局部极值和优化精度较低的缺点,提出一种多种群多模型协同进化的粒子群优化(MSM-PSO)算法。将整个粒子群分成大小相等的3个分群,各分群采用不同的进化模型,分群间相互影响促进。同时采用自适应动态... 为克服标准粒子群优化(PSO)算法易陷入局部极值和优化精度较低的缺点,提出一种多种群多模型协同进化的粒子群优化(MSM-PSO)算法。将整个粒子群分成大小相等的3个分群,各分群采用不同的进化模型,分群间相互影响促进。同时采用自适应动态惯性权重,以保持种群多样性,降低陷入局部极值的概率。测试结果表明,该算法全局性能好、寻优精度高。 展开更多
关键词 粒子群优化算法 多种群 多模型 自适应动态惯性 协同进化
下载PDF
基于PSODACCIW-VPMCD的滚动轴承智能检测方法 被引量:3
2
作者 刘吉彪 程军圣 马利 《振动与冲击》 EI CSCD 北大核心 2015年第23期42-47,共6页
针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法... 针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。 展开更多
关键词 动态加速常数协同惯性权重的粒子群算法(PSODACCIW) 基于变量预测模型的模式识别(VPMCD) 融合 滚动轴承 智能检测
下载PDF
一种基于粒子群神经网络的容差模拟电路故障诊断方法
3
作者 吴恒玉 韩宝如 《电子制作》 2015年第2Z期20-21,共2页
为了诊断模拟电路中的故障,在粒子群算法和BP神经网络的基础上,本文提出了一种动态加速常数协同惯性权重的粒子群算法和动量及自适应学习率的BP算法的混合算法训练神经网络权值,使得动态加速常数协同惯性权重的粒子群算法与动量及自适... 为了诊断模拟电路中的故障,在粒子群算法和BP神经网络的基础上,本文提出了一种动态加速常数协同惯性权重的粒子群算法和动量及自适应学习率的BP算法的混合算法训练神经网络权值,使得动态加速常数协同惯性权重的粒子群算法与动量及自适应学习率的BP算法相互补充,提高网络性能,克服了传统BP算法收敛速度不快的缺点。通过对容差模拟电路硬故障的诊断,表明该算法提高了网络的学习速度,能够实现对容差模拟电路硬故障的诊断。 展开更多
关键词 粒子群神经网络 动态加速常数协同惯性权重 动量及自适应学习率 故障诊断
下载PDF
基于粒子群优化算法的电力系统无功优化 被引量:2
4
作者 陶国正 徐志成 《计算机工程》 CAS CSCD 北大核心 2010年第20期198-199,202,共3页
针对粒子群优化算法在进化中随种群多样性降低易出现早熟收敛等问题,结合全局-局部最优模型,提出一种改进的全局-局部参数最优粒子群优化算法。利用全局-局部最优惯性权重及全局-局部最优加速度常数,简化速度更新方程,使算法性能得到改... 针对粒子群优化算法在进化中随种群多样性降低易出现早熟收敛等问题,结合全局-局部最优模型,提出一种改进的全局-局部参数最优粒子群优化算法。利用全局-局部最优惯性权重及全局-局部最优加速度常数,简化速度更新方程,使算法性能得到改善。将该算法应用于电力系统无功优化中,仿真结果表明,网损平均值更低,寻优性能更好,优化的网损值集中在较小的区间。 展开更多
关键词 粒子群优化算法 惯性 加速常数
下载PDF
中国股指波动率的智能预测模型与实证检验
5
作者 耿立艳 郭斌 《统计与决策》 CSSCI 北大核心 2016年第7期148-151,共4页
文章提出将改进型粒子群算法与最小二乘支持向量机(LSSVM)相结合的中国股指波动率智能预测方法,利用径向基核函数LSSVM对股指波动率进行建模及预测,并将自适应惯性权重粒子群算法(AIWPSO)和动态加速系数粒子群算法(DACPSO)分别实现径向... 文章提出将改进型粒子群算法与最小二乘支持向量机(LSSVM)相结合的中国股指波动率智能预测方法,利用径向基核函数LSSVM对股指波动率进行建模及预测,并将自适应惯性权重粒子群算法(AIWPSO)和动态加速系数粒子群算法(DACPSO)分别实现径向基核函数LSSVM的参数优化,建立了两种股指波动率的智能预测模型。以日内价格极差作为波动率的代理变量,通过对上证综指和深证成指的实证研究检验了两模型的有效性。检验结果表明,AlWPSO算法优化的径向基核函数LSSVM作为中国股指波动率智能预测模型,具有更高的波动率预测精度和更快的建模速度。 展开更多
关键词 波动率预测 最小二乘支持向量机 自适应惯性粒子群算法 动态加速系数粒子群算法
下载PDF
改进粒子群算法在电力系统无功优化中的应用
6
作者 谢锡锋 郑立玲 《广西电力》 2013年第2期12-14,共3页
针对传统粒子群算法易出现早熟收敛、易陷入局部最优、搜索精度低等问题,从惯性权重和加速常数两方面对其进行改进。将改进后的粒子群算法应用到电网无功优化中,加快了收敛速度和提高了搜索精度。仿真结果证明了改进的粒子群算法的正确... 针对传统粒子群算法易出现早熟收敛、易陷入局部最优、搜索精度低等问题,从惯性权重和加速常数两方面对其进行改进。将改进后的粒子群算法应用到电网无功优化中,加快了收敛速度和提高了搜索精度。仿真结果证明了改进的粒子群算法的正确性及有效性。 展开更多
关键词 无无功优化 改进粒子群优化算法 惯性 加速常数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部