In order to catch more process details in chemical processes, adynamic model for prediction of process trends is proposed bymodifying traditional time-series ANN (artificial neural networks)model with impulse response...In order to catch more process details in chemical processes, adynamic model for prediction of process trends is proposed bymodifying traditional time-series ANN (artificial neural networks)model with impulse response identification means. The applicationresults of the model is briefly discussed.展开更多
In this paper, we give a direct method for calculating the partition function, and hence the equation of state (EOS) of QCD at finite chemical potential and zero temperature. In the EOS derived in this paper the pre...In this paper, we give a direct method for calculating the partition function, and hence the equation of state (EOS) of QCD at finite chemical potential and zero temperature. In the EOS derived in this paper the pressure density is the sum of two terms: the first term P(μ)|μ=0 (the pressure density at μ = 0) is a μ-independent constant; the second term, which is totally determined by G[μ] (p) (the dressed quark propagator at finite μ), contains all the nontrivial μ-dependence. By applying a general result in the rainbow-ladder approximation of the Dyson-Schwinger approach obtained in our previous study [Phys. Rev. C 71 (2005) 015205], G[μ](p) is calculated from the meromorphic quark propagator proposed in [Phys. Rev. D 67 (2003) 054019]. From this the full analytic expression of the EOS of QCD at finite μ and zero T is obtained (apart from the constant term P(μ)|μ=0, which can in principle be caJculated from the CJT effective action). A comparison between our EOS and the cold, perturbative EOS of QCD of Fraga, Pisarski and Schaffner-Bielich is made. It is expected that our EOS can provide a possible new approach for the study of neutron stars.展开更多
文摘In order to catch more process details in chemical processes, adynamic model for prediction of process trends is proposed bymodifying traditional time-series ANN (artificial neural networks)model with impulse response identification means. The applicationresults of the model is briefly discussed.
基金supported in part by the National Natural Science Foundation of China under Grant No.10575050the Research Fund for the Doctoral Program of Higher Education under Grant No.20060284020
文摘In this paper, we give a direct method for calculating the partition function, and hence the equation of state (EOS) of QCD at finite chemical potential and zero temperature. In the EOS derived in this paper the pressure density is the sum of two terms: the first term P(μ)|μ=0 (the pressure density at μ = 0) is a μ-independent constant; the second term, which is totally determined by G[μ] (p) (the dressed quark propagator at finite μ), contains all the nontrivial μ-dependence. By applying a general result in the rainbow-ladder approximation of the Dyson-Schwinger approach obtained in our previous study [Phys. Rev. C 71 (2005) 015205], G[μ](p) is calculated from the meromorphic quark propagator proposed in [Phys. Rev. D 67 (2003) 054019]. From this the full analytic expression of the EOS of QCD at finite μ and zero T is obtained (apart from the constant term P(μ)|μ=0, which can in principle be caJculated from the CJT effective action). A comparison between our EOS and the cold, perturbative EOS of QCD of Fraga, Pisarski and Schaffner-Bielich is made. It is expected that our EOS can provide a possible new approach for the study of neutron stars.