A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which wa...A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which was based on high-precision microbarograph data,indicate that GWs played a key role in generating the rainstorm.The GWs experienced two intermittent periods of amplitude enhancement and period widening.The largest amplitudes of the GWs were 80–160 Pa,with a corresponding period range of 140–270 min,which were approximately 4 h ahead of the rainstorm.The severe storms appeared to affect the GWs by augmenting the wave amplitudes with center amplitudes of approximately 80–100 Pa and periods ranging between 210 and 270 min;in particular,the amplitudes increased to approximately 10 Pa for GWs with shorter periods(less than 36 min).The pre-existing large-amplitude GWs may be precursors to severe storms;that is,these GWs occurred approximately 4 h earlier than the time radars and satellites identified convections.Thus,these results indicate that large-amplitude GWs constitute a possible mechanism for severe-storm warning.展开更多
Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the frac...Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the fracturing effect.Obviously,the propagation process of fracturing fluid along the pipe string is crucial.In this paper,the fluid transient dynamics model in the pipe string was established,considering the boundary conditions of variable injection flow rate and reservoir seepage,and the unsteady friction was also taken into account.The above model was solved by characteristics and finite difference method respectively.Furthermore,the influences of geological parameters and fluid injection schemes on fluctuating pressure were also analyzed.The results show that unstable fluid-injection can cause noticeable fluctuation of fracturing fluid in the pipe string.Simultaneously,there is attenuation during the propagation of pressure fluctuation.The variation frequency of unstable fluid-injection and well depth have significant effects on pressure fluctuation amplitude at the bottom of the well.This research is conducive to understanding the mechanism of unstable fluid-injection hydraulic fracturing and providing guidance for the design of fluid-injection scheme.展开更多
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p...An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.展开更多
This study established a 3D finite element model for 15# hydropower house of the Three Gorges Project (TGP) and performed a nonlinear dynamic analysis under pressure fluctuation. In this numerical model, the stiffness...This study established a 3D finite element model for 15# hydropower house of the Three Gorges Project (TGP) and performed a nonlinear dynamic analysis under pressure fluctuation. In this numerical model, the stiffness degradation in tension for concrete was considered on the basis of the continuum isotropic damage theory. Natural vibration frequencies of the damaged and undamaged structures were compared after static water pressure was applied. Then a study was further conducted on forced vibration of the powerhouse with pre-existing damages under pressure fluctuation that acts on the flow passage; displacement, velocity and acceleration of the important structural members were afterwards presented and checked. Numerical results show that tensile damages in concrete surrounding the spiral case only exert significant impact upon the dynamic characteristics of substructure but show little effect on the superstructure. Nevertheless vibrations of the powerhouse are still under the recommended vibration limits.展开更多
In this paper, a two-dimensional photonic crystal (2DPC) based pressure sensor is proposed and designed, and the sensing characteristics such as the sensitivity and dynamic range are analyzed over the range of press...In this paper, a two-dimensional photonic crystal (2DPC) based pressure sensor is proposed and designed, and the sensing characteristics such as the sensitivity and dynamic range are analyzed over the range of pressure from 0 GPa to 7 GPa. The sensor is based on 2DPC with the square array of silicon rods surrounded by air. The sensor consists of two photonic crystal quasi waveguides and L3 defect. The L3 defect is placed in between two waveguides and is formed by modifying the radius of three Si rods. It is noticed that through simulation, the resonant wavelength of the sensor is shifted linearly towards the higher wavelength region while increasing the applied pressure level. The achieved sensitivity and dynamic range of the sensor is 2 nm/GPa and 7 Gpa, respectively.展开更多
基金sponsored by the National Key R&D Program of China [Grant No.2018YFC1507900]the National Natural Science Foundation of China [Grant No.41530427]。
文摘A detailed analysis of the dynamic frequency spectrum characteristics of gravity waves(GWs)during a local heavy rainfall event on 20–21 November 2016 in Foshan,China,is presented.The results of this analysis,which was based on high-precision microbarograph data,indicate that GWs played a key role in generating the rainstorm.The GWs experienced two intermittent periods of amplitude enhancement and period widening.The largest amplitudes of the GWs were 80–160 Pa,with a corresponding period range of 140–270 min,which were approximately 4 h ahead of the rainstorm.The severe storms appeared to affect the GWs by augmenting the wave amplitudes with center amplitudes of approximately 80–100 Pa and periods ranging between 210 and 270 min;in particular,the amplitudes increased to approximately 10 Pa for GWs with shorter periods(less than 36 min).The pre-existing large-amplitude GWs may be precursors to severe storms;that is,these GWs occurred approximately 4 h earlier than the time radars and satellites identified convections.Thus,these results indicate that large-amplitude GWs constitute a possible mechanism for severe-storm warning.
基金Project(CXZZBS 2020052)supported by Postgraduate Innovation Fund Projects of Hebei Province,China。
文摘Different from the stable injection mode of conventional hydraulic fracturing,unstable fluid-injection can bring significant dynamic effect by using variable injection flow rate,which is beneficial to improve the fracturing effect.Obviously,the propagation process of fracturing fluid along the pipe string is crucial.In this paper,the fluid transient dynamics model in the pipe string was established,considering the boundary conditions of variable injection flow rate and reservoir seepage,and the unsteady friction was also taken into account.The above model was solved by characteristics and finite difference method respectively.Furthermore,the influences of geological parameters and fluid injection schemes on fluctuating pressure were also analyzed.The results show that unstable fluid-injection can cause noticeable fluctuation of fracturing fluid in the pipe string.Simultaneously,there is attenuation during the propagation of pressure fluctuation.The variation frequency of unstable fluid-injection and well depth have significant effects on pressure fluctuation amplitude at the bottom of the well.This research is conducive to understanding the mechanism of unstable fluid-injection hydraulic fracturing and providing guidance for the design of fluid-injection scheme.
基金Project(8151027501000008) supported by Guangdong Natural Science Foundation, ChinaProject(2007490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, ChinaProject (2006K0006) supported by the Open Foundation of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
文摘An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.
基金Project (No. 50809013) supported by the National Natural Science Foundation of China
文摘This study established a 3D finite element model for 15# hydropower house of the Three Gorges Project (TGP) and performed a nonlinear dynamic analysis under pressure fluctuation. In this numerical model, the stiffness degradation in tension for concrete was considered on the basis of the continuum isotropic damage theory. Natural vibration frequencies of the damaged and undamaged structures were compared after static water pressure was applied. Then a study was further conducted on forced vibration of the powerhouse with pre-existing damages under pressure fluctuation that acts on the flow passage; displacement, velocity and acceleration of the important structural members were afterwards presented and checked. Numerical results show that tensile damages in concrete surrounding the spiral case only exert significant impact upon the dynamic characteristics of substructure but show little effect on the superstructure. Nevertheless vibrations of the powerhouse are still under the recommended vibration limits.
文摘In this paper, a two-dimensional photonic crystal (2DPC) based pressure sensor is proposed and designed, and the sensing characteristics such as the sensitivity and dynamic range are analyzed over the range of pressure from 0 GPa to 7 GPa. The sensor is based on 2DPC with the square array of silicon rods surrounded by air. The sensor consists of two photonic crystal quasi waveguides and L3 defect. The L3 defect is placed in between two waveguides and is formed by modifying the radius of three Si rods. It is noticed that through simulation, the resonant wavelength of the sensor is shifted linearly towards the higher wavelength region while increasing the applied pressure level. The achieved sensitivity and dynamic range of the sensor is 2 nm/GPa and 7 Gpa, respectively.