为了研究液压活塞压缩机压缩气体的动态压缩过程,探究压缩机结构参数与压缩机压缩性能的关系,以撬装式井口天然气回收处理系统的液压活塞式压缩机二级缸为研究对象,基于液压活塞式压缩机二级缸工作原理,将仿真过程划分为3个阶段分步模拟...为了研究液压活塞压缩机压缩气体的动态压缩过程,探究压缩机结构参数与压缩机压缩性能的关系,以撬装式井口天然气回收处理系统的液压活塞式压缩机二级缸为研究对象,基于液压活塞式压缩机二级缸工作原理,将仿真过程划分为3个阶段分步模拟,借助Fluent软件,结合动网格和UDF(user defined functions)编译进行仿真分析,明确了二级缸内天然气的动态压缩过程,并将活塞运动作为压缩机压缩性能的评判指标,得到了二级缸结构参数对压缩机压缩性能的影响。研究表明:工作行程和下气缸出口分布与压缩性能关系不大,而下气缸出口大小的增大对压缩性能有较大提升,范围内最大增幅47.6%。相关研究为液压活塞式压缩机的优化与设计提供一定的参考。展开更多
The hot deformation behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17 Zr alloy and its microstructural evolution were investigated by isothermal compression test in the deformation temperature range between 623 and 773 K and th...The hot deformation behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17 Zr alloy and its microstructural evolution were investigated by isothermal compression test in the deformation temperature range between 623 and 773 K and the strain rate range between 0.01 and 20 s^(-1).The results show that the flow stress decreased with decreasing strain rate and increasing deformation temperature.At low deformation temperature(≤673 K) and high strain rate(≥1 s^(-1)),the main flow softening was caused by dynamic recovery;conversely,at higher deformation temperature and lower strain rate,the main flow softening was caused by dynamic recrystallization.Moreover,the slipping mechanism transformed from dislocation glide to grain boundary sliding with increasing the deformation temperature and decreasing the strain rate.According to TEM observation,numerous Al_3Zr particles precipitated in matrix,which could effectively inhibit the dynamic recrystallization of the alloy.Based on the processing map,the optimum processing conditions for experimental alloy were in deformation temperature range from 730 K to 773 K and strain rate range from 0.033 s^(-1) to 0.18 s^(-1) with the maximum efficiency of 39%.展开更多
文摘为了研究液压活塞压缩机压缩气体的动态压缩过程,探究压缩机结构参数与压缩机压缩性能的关系,以撬装式井口天然气回收处理系统的液压活塞式压缩机二级缸为研究对象,基于液压活塞式压缩机二级缸工作原理,将仿真过程划分为3个阶段分步模拟,借助Fluent软件,结合动网格和UDF(user defined functions)编译进行仿真分析,明确了二级缸内天然气的动态压缩过程,并将活塞运动作为压缩机压缩性能的评判指标,得到了二级缸结构参数对压缩机压缩性能的影响。研究表明:工作行程和下气缸出口分布与压缩性能关系不大,而下气缸出口大小的增大对压缩性能有较大提升,范围内最大增幅47.6%。相关研究为液压活塞式压缩机的优化与设计提供一定的参考。
基金Project(2016GK1004)supported by the Science and Technology Major Project of Hunan Province,China
文摘The hot deformation behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17 Zr alloy and its microstructural evolution were investigated by isothermal compression test in the deformation temperature range between 623 and 773 K and the strain rate range between 0.01 and 20 s^(-1).The results show that the flow stress decreased with decreasing strain rate and increasing deformation temperature.At low deformation temperature(≤673 K) and high strain rate(≥1 s^(-1)),the main flow softening was caused by dynamic recovery;conversely,at higher deformation temperature and lower strain rate,the main flow softening was caused by dynamic recrystallization.Moreover,the slipping mechanism transformed from dislocation glide to grain boundary sliding with increasing the deformation temperature and decreasing the strain rate.According to TEM observation,numerous Al_3Zr particles precipitated in matrix,which could effectively inhibit the dynamic recrystallization of the alloy.Based on the processing map,the optimum processing conditions for experimental alloy were in deformation temperature range from 730 K to 773 K and strain rate range from 0.033 s^(-1) to 0.18 s^(-1) with the maximum efficiency of 39%.