期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
时延Elman递归神经网络及其在PMSM的混沌控制中的应用 被引量:1
1
作者 李静 左斌 胡云安 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第2期460-465,共6页
针对Elman递归神经网络存在的高深度、低分辨率问题,提出了一个结构简单的时延Elman递归神经网络模型。通过在Elman递归神经网络中引入多步的时延结构和反馈结构增强网络的记忆深度和分辨率。针对永磁同步电动机(PMSM)中存在的混沌运动... 针对Elman递归神经网络存在的高深度、低分辨率问题,提出了一个结构简单的时延Elman递归神经网络模型。通过在Elman递归神经网络中引入多步的时延结构和反馈结构增强网络的记忆深度和分辨率。针对永磁同步电动机(PMSM)中存在的混沌运动,设计了时延Elman递归神经网络控制器和辨识器,推导出时延Elman递归神经网络的动态反传算法。运用离散型Lyapunov稳定判据,推导出此神经网络控制器和辨识器的权值自适应学习速率的取值范围,确保了控制系统的稳定性和快速收敛性。仿真结果表明,作者提出的时延Elman递归神经网络在动态系统的辨识和控制等方面具有良好的性能。 展开更多
关键词 自动控制技术 时延Elman递归神经网络 动态反传算法 永磁同步电动机 混沌 LYAPUNOV稳定性
下载PDF
Approximation Property of the Modified Elman Network 被引量:5
2
作者 任雪梅 陈杰 +1 位作者 龚至豪 窦丽华 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期19-23,共5页
A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three la... A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three layers including the input layer, the hidden layer and the output layer. The input layer is composed of two different groups of neurons, the group of external input neurons and the group of the internal context neurons. Since arbitrary connections can be allowed from the hidden layer to the context layer, the modified Elman network has more memory space to represent dynamic systems than the Elman network. In addition, it is proved that the proposed network with appropriate neurons in the context layer can approximate the trajectory of a given dynamical system for any fixed finite length of time. The dynamic backpropagation algorithm is used to estimate the weights of both the feedforward and feedback connections. The methods have been successfully applied to the modelling of nonlinear plants. 展开更多
关键词 nonlinear systems Elman network dynamic backpropagation algorithm MODELLING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部