期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
能源约束下的经济可持续增长 被引量:31
1
作者 杨宏林 田立新 丁占文 《系统工程》 CSCD 北大核心 2004年第3期40-43,共4页
建立能源利用动态变化方程 ,在经济增长模型中引入能源约束 ,讨论如何在保证能源可持续利用的条件下 ,实现经济的可持续增长及社会的可持续发展。得出结论为 :现代经济增长的源动力是技术进步。只有提高生产技术水平 ,降低能耗 ,提高能... 建立能源利用动态变化方程 ,在经济增长模型中引入能源约束 ,讨论如何在保证能源可持续利用的条件下 ,实现经济的可持续增长及社会的可持续发展。得出结论为 :现代经济增长的源动力是技术进步。只有提高生产技术水平 ,降低能耗 ,提高能源利用效率 ,才有可能在保证能源可持续利用的条件下 。 展开更多
关键词 能源利用 动态变化方程 经济发展 经济增长 可持续增长 经济建设 中国
下载PDF
Dynamic variation and the fast acceleration of particles in Earth's radiation belt 被引量:5
2
作者 ZONG QiuGang YUAN ChongJing +1 位作者 WANG YongFu SU ZhenPeng 《Science China Earth Sciences》 SCIE EI CAS 2013年第7期1118-1140,共23页
We have quantitatively investigated the radiation belt's dynamic variations of 1.5-6.0 MeV electrons during 54 CME (coronal mass ejection)-driven storms from 1993 to 2003 and 26 CIR (corotating interaction region)... We have quantitatively investigated the radiation belt's dynamic variations of 1.5-6.0 MeV electrons during 54 CME (coronal mass ejection)-driven storms from 1993 to 2003 and 26 CIR (corotating interaction region)-driven recurrent storms in 1995 by utilizing case and statistical studies based on the data from the SAMPEX satellite. It is found that the boundaries determined by fitting an exponential to the flux as a function of L shell obtained in this study agree with the observed outer and inner boundaries of the outer radiation belt. Furthermore, we have constructed the Radiation Belt Content (RBC) index by integrating the number density of electrons between those inner and outer boundaries. According to the ratio of the maximum RBC index during the recovery phase to the pre-storm average RBC index, we conclude that CME-driven storms produce more relativistic electrons than CIR-driven storms in the entire outer radiation belt, although the relativistic electron fluxes during CIR-related storms are much higher than those during CME-related storms at geosynchronous orbit. The physical radiation belt model STEERB is based on the three-dimensional Fokker-Planck equation and includes the physical processes of local wave-particle interactions, radial diffusion, and adiabatic transport. Due to the limitation of numerical schemes, formal radiation belt models do not include the cross diffusion term of local wave-particle interactions. The numerical experiments of STEERB have shown that the energetic electron fluxes can be overestimated by a factor of 5 or even several orders (depending on the pitch angle) if the cross diffusion term is ignored. This implies that the cross diffusion term is indispensable for the evaluation of radiation belt electron fluxes. Formal radiation belt models often adopt dipole magnetic field; the time varying Hilmer-Voigt geomagnetic field was adopted by the STEERB model, which self-consistently included the adiabatic transport process. The test simulations clearly indicate that the adiabatic process can significantly affect the evolution of radiation belt electrons. The interactions between interplanetary shocks and magnetosphere can excite ULF waves in the inner magnetosphere; the excited polodial mode ULF wave can cause the fast acceleration of "killer electrons". The acceleration mechanism of energetic electrons by poloidal and toroidal mode ULF wave is different at different L shells. The acceleration of energetic electrons by the toroidal mode ULF waves becomes important in the region with a larger L shell (the outer magnetosphere); in smaller L shell regions (the inner magnetosphere), the poloidal mode ULF becomes responsible for the acceleration of energetic electrons. 展开更多
关键词 radiation belt killer electrons CME magnetic storm CIR magnetic storm wave-particle interaction ULF wave VLFwave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部