随着大规模储能系统的广泛发展,快速准确地估计锂离子电池的荷电状态(state of charge,SOC)对系统的安全可靠运行至关重要。然而,在传统的固定串并联电池单元/模块拓扑结构中,无法直接测量电池单元/模块的开路电压(open circuit voltage...随着大规模储能系统的广泛发展,快速准确地估计锂离子电池的荷电状态(state of charge,SOC)对系统的安全可靠运行至关重要。然而,在传统的固定串并联电池单元/模块拓扑结构中,无法直接测量电池单元/模块的开路电压(open circuit voltage,OCV),也就无法建立OCV-SOC映射关系来准确估计SOC。对此,提出一种基于新型动态可重构电池网络的精准SOC估计方法。该方法可以在1s内测量得到OCV,然后使用梯度增强决策树估计电池单元/模块的准确SOC。实验结果表明该方法的高效率和有效性,为电池状态估计提供了一个范式结构。展开更多
文摘随着大规模储能系统的广泛发展,快速准确地估计锂离子电池的荷电状态(state of charge,SOC)对系统的安全可靠运行至关重要。然而,在传统的固定串并联电池单元/模块拓扑结构中,无法直接测量电池单元/模块的开路电压(open circuit voltage,OCV),也就无法建立OCV-SOC映射关系来准确估计SOC。对此,提出一种基于新型动态可重构电池网络的精准SOC估计方法。该方法可以在1s内测量得到OCV,然后使用梯度增强决策树估计电池单元/模块的准确SOC。实验结果表明该方法的高效率和有效性,为电池状态估计提供了一个范式结构。