A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culve...A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.展开更多
After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Throu...After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Through simulation tests, the wave-induced dynamic response of the slope is analyzed. The soil body is taken as linear elastic body when it has a small deformation under the small wave action. Based on tests, the excess pore pressure and slope displacement under the loading in different wave period are analyzed. The ratio of dynamic strength and static strength to the breaking process of the slope is discussed. It is demonstrated that smaller wave period gives rise to a larger strain of the slope under the same stress. At different depth of water, different weakness effect on the stability of the soil slope is observed and the slope has an adaptability to the wave action to some extent.展开更多
An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For thi...An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.展开更多
Bridge foundations located in deep water are usually subjected to horizontal dynamic loads and moments which may be caused by the wind, waves, earthquake, and the possibility of boat crashing or vehicle braking. Caiss...Bridge foundations located in deep water are usually subjected to horizontal dynamic loads and moments which may be caused by the wind, waves, earthquake, and the possibility of boat crashing or vehicle braking. Caisson foundations based on gravel or sand cushions are a new type of deep-water foundation for bridges, suitable for meizoseismal areas. In this paper, harmonic horizontal excitation tests for the study of the lateral dynamic response of caisson foundations based on cushion layers are described. Different lateral loads and two different cushion types are considered. The results show that the lateral dynamic responses of caisson foundations based on sand and gravel cushions both show strong nonlinear characteristics, and the resonant frequency of the foundation decreases with the increase of the excitation force. The dynamic displacement of a foundation based on a sand cushion is far less than that based on a gravel cushion, and the rate of decrease of the resonant frequency of a foundation based on a gravel cushion is faster than that of a foundation based on a sand cushion under the same conditions. Under dynamic loading the gravel cushion can more effectively dissipate vibration energy and isolate the vibration, than the sand cushion can. A simplified nonlinear analysis method is proposed to simulate the lateral dynamic response of caisson foundations, and the predicted response shows a reasonable match with the results observed in laboratory tests. Scaling laws have also been applied in this small-scale vibration model test to predict the dynamic behavior of the prototype foundation.展开更多
文摘A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.
基金the National Natural Science Foundation of China (No. 50104013).
文摘After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Through simulation tests, the wave-induced dynamic response of the slope is analyzed. The soil body is taken as linear elastic body when it has a small deformation under the small wave action. Based on tests, the excess pore pressure and slope displacement under the loading in different wave period are analyzed. The ratio of dynamic strength and static strength to the breaking process of the slope is discussed. It is demonstrated that smaller wave period gives rise to a larger strain of the slope under the same stress. At different depth of water, different weakness effect on the stability of the soil slope is observed and the slope has an adaptability to the wave action to some extent.
基金the support of the National Natural Science Foundation of China (Grant No. 51309179)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA051705)+2 种基金the International S&T Cooperation Program of China (Grant No. 2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)the Tianjin Municipal Natural Science Foundation (Grant Nos. 14JCQNJC07000 and 13JCYBJC19100)
文摘An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.
基金supported by the National Natural Science Foundation of China(Nos.51808220 and 51822809)the Natural Science Foundation of Jiangxi Province(Nos.20192BAB216036 and 20181BCB24011)the Science and Technology Research Project of the Education Department of Jiangxi Province(No.GJJ180340),China。
文摘Bridge foundations located in deep water are usually subjected to horizontal dynamic loads and moments which may be caused by the wind, waves, earthquake, and the possibility of boat crashing or vehicle braking. Caisson foundations based on gravel or sand cushions are a new type of deep-water foundation for bridges, suitable for meizoseismal areas. In this paper, harmonic horizontal excitation tests for the study of the lateral dynamic response of caisson foundations based on cushion layers are described. Different lateral loads and two different cushion types are considered. The results show that the lateral dynamic responses of caisson foundations based on sand and gravel cushions both show strong nonlinear characteristics, and the resonant frequency of the foundation decreases with the increase of the excitation force. The dynamic displacement of a foundation based on a sand cushion is far less than that based on a gravel cushion, and the rate of decrease of the resonant frequency of a foundation based on a gravel cushion is faster than that of a foundation based on a sand cushion under the same conditions. Under dynamic loading the gravel cushion can more effectively dissipate vibration energy and isolate the vibration, than the sand cushion can. A simplified nonlinear analysis method is proposed to simulate the lateral dynamic response of caisson foundations, and the predicted response shows a reasonable match with the results observed in laboratory tests. Scaling laws have also been applied in this small-scale vibration model test to predict the dynamic behavior of the prototype foundation.