In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of m...In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.6133300861273153&61304027)
文摘In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy.