目前,事件检测的难点在于一词多义和多事件句的检测.为了解决这些问题,提出了一个新的基于语言模型的带注意力机制的循环卷积神经网络模型(recurrent and convolutional neural network with attention based on language models,LM-ARC...目前,事件检测的难点在于一词多义和多事件句的检测.为了解决这些问题,提出了一个新的基于语言模型的带注意力机制的循环卷积神经网络模型(recurrent and convolutional neural network with attention based on language models,LM-ARCNN).该模型利用语言模型计算输入句子的词向量,将句子的词向量输入长短期记忆网络获取句子级别的特征,并使用注意力机制捕获句子级别特征中与触发词相关性高的特征,最后将这两部分的特征输入到包含多个最大值池化层的卷积神经网络,提取更多上下文有效组块.在ACE2005英文语料库上进行实验,结果表明,该模型的 F 1 值为74.4%,比现有最优的文本嵌入增强模型(DEEB)高0.4%.展开更多
针对于冷水机组提出一种基于稀疏局部嵌入深度卷积网络(sparsely local embedding network,SLENet)的故障诊断方法。采用稀疏局部嵌入方法代替卷积核,对输入数据进行特征选择,避免了复杂的训练和调参过程。另外采用空间金字塔最大池化...针对于冷水机组提出一种基于稀疏局部嵌入深度卷积网络(sparsely local embedding network,SLENet)的故障诊断方法。采用稀疏局部嵌入方法代替卷积核,对输入数据进行特征选择,避免了复杂的训练和调参过程。另外采用空间金字塔最大池化作为网络的输出层,减少了网络的输出维数和分类器的计算量。针对美国采暖、制冷与空调工程师学会提供的冷水机组的典型故障数据进行分类,结果表明,该方法相比深度卷积网络(CNN)和支持向量机(SVM)方法具有更高的故障诊断精度。展开更多
为了改善低层特征对图像内容描述不够精确而导致现勘图像分类准确率低的问题,提出一种利用深度学习特征的改进局部约束线性编码(local-constrained linear coding,LLC)算法。采用滑动窗口法提取图像密集卷积神经网络(convolutional neur...为了改善低层特征对图像内容描述不够精确而导致现勘图像分类准确率低的问题,提出一种利用深度学习特征的改进局部约束线性编码(local-constrained linear coding,LLC)算法。采用滑动窗口法提取图像密集卷积神经网络(convolutional neural networks,CNN)特征;利用近似LLC算法对提取的密集CNN特征进行快速编码和最大池化,并采用多尺度空间金字塔匹配产生包含空间位置信息的稀疏编码特征。最后,利用支持向量机对现勘图像进行分类从而得到高效的图像特征。对比实验结果表明,该算法的分类准确率较高。展开更多
为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人...为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人横向特征的丢失;其次使用Hardswish作为卷积层的激活函数优化网络性能;最后使用GC(globe context)自注意力机制获得全文特征信息.在分类回归网络部分,采用三尺度检测策略,提升小尺度行人目标的检测精度;使用k-means++算法重新生成数据集锚框,提高网络收敛速度.构建行人检测数据集并分为训练集和测试集,对DOEYT算法的性能进行试验验证.结果表明,非对称最大池化、Hardswish函数、GC自注意力机制分别使平均准确率AP提高14.4%、7.9%、10.8%;DOEYT算法在测试集上检测的平均准确率高达91.2%,检测速度为103帧/s,可见该算法可快速准确地检测行人,降低交通事故发生的风险.展开更多
文摘目前,事件检测的难点在于一词多义和多事件句的检测.为了解决这些问题,提出了一个新的基于语言模型的带注意力机制的循环卷积神经网络模型(recurrent and convolutional neural network with attention based on language models,LM-ARCNN).该模型利用语言模型计算输入句子的词向量,将句子的词向量输入长短期记忆网络获取句子级别的特征,并使用注意力机制捕获句子级别特征中与触发词相关性高的特征,最后将这两部分的特征输入到包含多个最大值池化层的卷积神经网络,提取更多上下文有效组块.在ACE2005英文语料库上进行实验,结果表明,该模型的 F 1 值为74.4%,比现有最优的文本嵌入增强模型(DEEB)高0.4%.
文摘针对于冷水机组提出一种基于稀疏局部嵌入深度卷积网络(sparsely local embedding network,SLENet)的故障诊断方法。采用稀疏局部嵌入方法代替卷积核,对输入数据进行特征选择,避免了复杂的训练和调参过程。另外采用空间金字塔最大池化作为网络的输出层,减少了网络的输出维数和分类器的计算量。针对美国采暖、制冷与空调工程师学会提供的冷水机组的典型故障数据进行分类,结果表明,该方法相比深度卷积网络(CNN)和支持向量机(SVM)方法具有更高的故障诊断精度。
文摘为了改善低层特征对图像内容描述不够精确而导致现勘图像分类准确率低的问题,提出一种利用深度学习特征的改进局部约束线性编码(local-constrained linear coding,LLC)算法。采用滑动窗口法提取图像密集卷积神经网络(convolutional neural networks,CNN)特征;利用近似LLC算法对提取的密集CNN特征进行快速编码和最大池化,并采用多尺度空间金字塔匹配产生包含空间位置信息的稀疏编码特征。最后,利用支持向量机对现勘图像进行分类从而得到高效的图像特征。对比实验结果表明,该算法的分类准确率较高。
文摘为了给驾驶员提供实时准确的行人信息、减少交通事故的发生,提出一种检测增强型YOLOv3-tiny(detection of enhanced YOLOv3-tiny,DOEYT)行人检测算法.创建鲁棒的特征提取网络,首先使用非对称最大池化进行下采样,防止随着感受野增大行人横向特征的丢失;其次使用Hardswish作为卷积层的激活函数优化网络性能;最后使用GC(globe context)自注意力机制获得全文特征信息.在分类回归网络部分,采用三尺度检测策略,提升小尺度行人目标的检测精度;使用k-means++算法重新生成数据集锚框,提高网络收敛速度.构建行人检测数据集并分为训练集和测试集,对DOEYT算法的性能进行试验验证.结果表明,非对称最大池化、Hardswish函数、GC自注意力机制分别使平均准确率AP提高14.4%、7.9%、10.8%;DOEYT算法在测试集上检测的平均准确率高达91.2%,检测速度为103帧/s,可见该算法可快速准确地检测行人,降低交通事故发生的风险.