A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distrib...A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.展开更多
The shift mechanism of Bragg wavelength with stress variation for a fiber grating is investigated in detail. The influence of strain change on reflection and bandpass is theoretically analyzed. By applying stress, the...The shift mechanism of Bragg wavelength with stress variation for a fiber grating is investigated in detail. The influence of strain change on reflection and bandpass is theoretically analyzed. By applying stress, the dynamic single/dual channel filter with tunable fiber Bragg gratings is achieved.展开更多
This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spe...This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.展开更多
We proposed two schemes of generating and localizing dynamic gratings in optical fibers: one is based on the gain saturation in erbium-doped fiber; the other is based on Brillouin scattering in the fiber. By using th...We proposed two schemes of generating and localizing dynamic gratings in optical fibers: one is based on the gain saturation in erbium-doped fiber; the other is based on Brillouin scattering in the fiber. By using these dynamic gratings, fully distributed strain/temperature sensors have been demonstrated. In this presentation, we review the principles, basic schemes, and experimental demonstrations of the novel dynamic grating techniques.展开更多
基金The National Key Research and Development Program of China(No.2017YFA0104302)the National Natural Science Foundation of China(No.51832001,61821002,81971750).
文摘A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.
文摘The shift mechanism of Bragg wavelength with stress variation for a fiber grating is investigated in detail. The influence of strain change on reflection and bandpass is theoretically analyzed. By applying stress, the dynamic single/dual channel filter with tunable fiber Bragg gratings is achieved.
文摘This paper reviews distributed discrimination of strain and temperature by use of an optical fiber based on fiber optic nerve systems. The preliminary method based on multiple resonance peaks of the Brillouin gain spectrum in a specially-designed fiber is firstly introduced. The complete discrimination of strain and temperature based on the Brillouin dynamic grating in a polarization maintaining fiber is extensively presented. The basic principle and two experimental schemes of distributed discrimination based on fiber optic nerve systems are demonstrated. The performance of the high discriminative accuracy (0.1 ~C-0.3 ~C and 5 kte-12~te) and high spatial resolution (-10 cm) with the effective measurement points of about 50 for a standard system configuration or about 1000 for a modified one will be highly expected in real industry applications.
文摘We proposed two schemes of generating and localizing dynamic gratings in optical fibers: one is based on the gain saturation in erbium-doped fiber; the other is based on Brillouin scattering in the fiber. By using these dynamic gratings, fully distributed strain/temperature sensors have been demonstrated. In this presentation, we review the principles, basic schemes, and experimental demonstrations of the novel dynamic grating techniques.