Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future ...Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future availability of groundwater to meet domestic, agricultural, industrial, and environmental needs. Deep understanding of spatial and temporal water table dynamics together with transport processes is required. This paper gathers historical geological, hidrological and chemical information for quantitative and qualitative as well as spatial and temporal evolution of groundwater for Aguanaval and Chupaderos aquifers, both surrounding Calera aquifer in Mexico. Historical databases were employed to determine temporal trends of water levels and values were projected for years 2010, 2030 and 2050. Potential recharge sites were also identified through water level-topography correlation. The water quality analysis was completed by obtaining, through geostatistics, spatial distributions for bicarbonate, chloride, sulfate, total dissolved solids, temperature, and sodium, employing databases generated in recent sampling campaigns. This analysis provided additional elements to help understand the functioning of groundwater in studied aquifers. Finally, results were compared with permissible values established in the Mexican norm.展开更多
Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a t...Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.展开更多
文摘Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future availability of groundwater to meet domestic, agricultural, industrial, and environmental needs. Deep understanding of spatial and temporal water table dynamics together with transport processes is required. This paper gathers historical geological, hidrological and chemical information for quantitative and qualitative as well as spatial and temporal evolution of groundwater for Aguanaval and Chupaderos aquifers, both surrounding Calera aquifer in Mexico. Historical databases were employed to determine temporal trends of water levels and values were projected for years 2010, 2030 and 2050. Potential recharge sites were also identified through water level-topography correlation. The water quality analysis was completed by obtaining, through geostatistics, spatial distributions for bicarbonate, chloride, sulfate, total dissolved solids, temperature, and sodium, employing databases generated in recent sampling campaigns. This analysis provided additional elements to help understand the functioning of groundwater in studied aquifers. Finally, results were compared with permissible values established in the Mexican norm.
基金supported by the Nonprofit Sector Specific Research of Ministry of Water Resources (Grant No. 200701015)
文摘Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.