期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多物理场耦合的压接型IGBT功率循环应力特性仿真分析
1
作者 鲁宇加 焦超群 +2 位作者 陈蕊 袁文迁 张秀敏 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期4195-4206,共12页
压接型IGBT器件广泛应用于高压柔性直流系统中。由于在功率循环实验以及实际运行中,器件不同材料之间存在的热膨胀效应会显著影响机械应力,其难以通过实验仪器获取,进而造成疲劳寿命预测困难以及不准确,因此需要研究与实际相符的高精度... 压接型IGBT器件广泛应用于高压柔性直流系统中。由于在功率循环实验以及实际运行中,器件不同材料之间存在的热膨胀效应会显著影响机械应力,其难以通过实验仪器获取,进而造成疲劳寿命预测困难以及不准确,因此需要研究与实际相符的高精度仿真模型计算器件内部的应力参数。首先,分析了影响IGBT器件有限元模型准确性的物理特性,并提出考虑IGBT芯片动态电导率的高精度IGBT电-热-力多物理场耦合模型。其次,通过器件饱和压降、结温以及Von Mises应力对所搭建模型进行实验对比分析,验证了模型的准确性。最后,利用所提出的多物理场耦合模型仿真分析了压接型IGBT器件在工况以及功率循环过程中的应力变化特性,提出“额外应力差”这一概念以表征IGBT在功率循环中应力存在的特殊变化规律并分析了额外应力差的产生机理,明确应力特性对在研究寿命预测等问题时具有的意义。 展开更多
关键词 压接型IGBT 动态应力特性 额外应力 应力寿命预测 有限元仿真 电-热-力多物理场耦合
下载PDF
轻型客车车架动态应力应变特性分析 被引量:3
2
作者 陈波 刘延林 《洛阳大学学报》 2002年第4期76-81,共6页
在建立的车架数学和力学模型基础上,揭示了车架在典型路面激励下的动态响应及应力应变状态,为该车在山区路况下车身产生开裂、高速行驶中稳定性等问题的解决在车架特性上找到影响因素.
关键词 轻型客车 动态应力应变特性 车架设计 有限元法 应力分析 应变分析
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
3
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Basic dynamic characteristics and seismic design of anchorage system
4
作者 段建 言志信 +1 位作者 任志华 赵红亮 《Journal of Central South University》 SCIE EI CAS 2014年第8期3275-3283,共9页
Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the ... Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme. 展开更多
关键词 anchorage system natural frequency vibration mode dangerous region resonance line seismic precautionary
下载PDF
Dynamic behaviors of pretensioned cable AERORail structure
5
作者 李方元 吴培峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2267-2276,共10页
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte... The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure. 展开更多
关键词 pretensioned cable AERORail structure dynamic bchavior model test vibration characteristic dynamic amplification factor influence line
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部