期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
轻型客车车架动态应力应变特性分析 被引量:3
1
作者 陈波 刘延林 《洛阳大学学报》 2002年第4期76-81,共6页
在建立的车架数学和力学模型基础上,揭示了车架在典型路面激励下的动态响应及应力应变状态,为该车在山区路况下车身产生开裂、高速行驶中稳定性等问题的解决在车架特性上找到影响因素.
关键词 轻型客车 动态应力应变特性 车架设计 有限元法 应力分析 应变分析
下载PDF
风力机叶片动态应变分布特征的研究 被引量:4
2
作者 白叶飞 汪建文 +3 位作者 赵元星 魏海姣 张立茹 侯亚丽 《可再生能源》 CAS 北大核心 2014年第3期306-311,共6页
针对风力机叶片动态应变分布规律特性,以NACA4415翼型叶片为模型进行了数值模拟,并与采用旋转遥测技术测试的该风力机叶片动态应变试验结果进行了对比分析。结果表明,数值模拟与试验结果趋势一致;在气动力作用下,风力机叶片的应变主要... 针对风力机叶片动态应变分布规律特性,以NACA4415翼型叶片为模型进行了数值模拟,并与采用旋转遥测技术测试的该风力机叶片动态应变试验结果进行了对比分析。结果表明,数值模拟与试验结果趋势一致;在气动力作用下,风力机叶片的应变主要集中在叶片的中部略靠后的位置,其根部及叶尖附近的应变与中部相比较小,前缘部分的应变值与后缘部分相比较大,压力面应变值大于吸力面相应位置的应变值;在气动力的基础上施加重力和离心力后,叶根处应变值增加迅速,同时叶片中部应变值保持在较大的水平,主要是离心力和气动力共同作用所致。 展开更多
关键词 水平轴风力机 动态应变特性 数值模拟 旋转遥测技术 试验研究
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
3
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Shear modulus and damping ratio of sand-granulated rubber mixtures 被引量:12
4
作者 M.Ehsani N.Shariatmadari S.M.Mirhosseini 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3159-3167,共9页
Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping chara... Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice. 展开更多
关键词 sand-rubber mixture shear modulus damping ratio low to high shear strain amplitude cyclic triaxial test torsionalresonant column test granular rubber
下载PDF
Effect of specimen size on energy dissipation characteristics of red sandstone under high strain rate 被引量:26
5
作者 Li Ming Mao Xianbiao +4 位作者 Lu Aihong Tao Jing Zhang Guanghui Zhang Lianying Li Chong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期151-156,共6页
In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respectively, were subjected to blow tests using a Split Hopkinson Pressure Bar(SHPB) system at a pressure of 0.4 atmosph... In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respectively, were subjected to blow tests using a Split Hopkinson Pressure Bar(SHPB) system at a pressure of 0.4 atmospheres. In this paper, we have analyzed the effect of slenderness ratio on the mechanical properties and energy dissipation characteristics of red sandstone under high strain rates. The processes of compaction, elastic deformation and stress softening deformation of specimens contract with an increase in slenderness ratio, whilst the nonlinear deformation process extends correspondingly. In addition, degrees of damage of specimens reduced gradually and the type of destruction showed a transformation trend from stretching failure towards shear failure when the slenderness ratio increased. A model of dynamic damage evolution in red sandstone was established and the parameters of the constitutive model at different ratios of length to diameter were determined. By comparison with the experimental curve, the accuracy of the model, which could reflect the stress–strain dynamic characteristics of red sandstone, was verified. From the view of energy dissipation, an increase in slenderness ratio of a specimen decreased the proportion of energy dissipation and caused a gradual fall in the capability of energy dissipation during the specimen failure process. To some extent, the study indicated the effects of slenderness ratios on the mechanical properties and energy dissipation characteristics of red sandstone under the high strain rate, which provides valuable references to related engineering designs and academic researches. 展开更多
关键词 Red sandstone Slenderness ratio SHP BImpact failure Energy dissipation
下载PDF
The Dynamic Characteristics of Strain Fields and Crustal Movement before the Wenchuan Earthquake (M_S=8.0) 被引量:1
6
作者 Jiang Zaisen Wu Yanqiang Fang Ying Li Peng Wang Wuxing 《Earthquake Research in China》 2009年第3期257-265,共9页
In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Cru... In this paper, we analyze the crustal movements, strain field changes and large scale dynamic characteristics of horizontal deformation before the Wenchuan earthquake ( Ms = 8.0) using GPS data obtained from the Crustal Movement Observation Network of China. The following issues are discussed. First, the strain fields of the Longmeushan fault zone located at the epicenter show slow accumulation, because of the tectonic dynamics process subjected to the eastward movement of the Bayan Har block. Second, the different movements between the Longmenshan fault and South China block are smaller than the errors of GPS observation. Third, the high value of compressive strain (2004 - 2007) is located at the epicenter, which shows that the local squeezing action is stronger than before. Fourth, the data from GPS reference stations in the Chinese Mainland show that crustal shortening is faster than before in the north-eastern direction, which is part of the background of the local tectonic dynamics increase in the Longmenshan fault zone. 展开更多
关键词 Wenchuan earthquake Ms = 8.0 GPS Crustal movement Strain field Tectonic dynamics background
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部