Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links ...Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.展开更多
Provided the results of a research conducted to investigate the relationships between the empirical vibration attenuation equation of Peak Particle Velocity (PPV) and the Scaled Charge (SC) through testing the bla...Provided the results of a research conducted to investigate the relationships between the empirical vibration attenuation equation of Peak Particle Velocity (PPV) and the Scaled Charge (SC) through testing the blasting-induced vibrations on the spot of Wanshishan tunnel based on 96 vibration recordings. It is found that the maximum charge amount per delay in Wanshishan tunnel excavating is determined by the buildings on the surface and the constructed tunnel nearby. Considering that the repeated blast loading in tunnel blasting caused accumulative effects of damage on buildings, comfortable threshold damage limits of PPV to maintain buildings safety was given. Dynamic Stress Ratio (DSR) was adopted to study the stability of constructed tunnel on the action of blasting induced vibrations. The method to determine specific maximum charge amount per delay in Wanshishan tunnel excavation was given. It is proved that the findings in this study are very effective to control the negative effects of blasting-induced vibrations on buildings on the surface and constructed tunnel nearby.展开更多
A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force find...A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force finding method named the imbal-ance force iterative method is proposed,which can overcome some limitations of the integrity feasible prestressing method.For instance,even if groups are assigned by mistake,the pretension distribution that satisfies the known geometry form can also be found.This method possess good stability and calculation efficiency,and a case study indicates that it is applicable to the force finding of large and complicated cable domes.On the other hand,form finding analysis of cable domes is also a key engineering problem.However,rigid displacement occurs in this process,which makes the analysis more complex.In this pa-per,the dynamic relaxation method was selected,and the problem of rigid displacement was therefore effectively solved.The method includes two steps:first,the stretching cables are released,and secondly,an axial force is imposed on the two ends of each released cable.This method is convenient in its calculation and clear in its conception.A case study indicates that the method is suitable for the simulation of the construction process of various cable domes and cable-strut tension structures.Moreover,a form finding experiment was conducted on a model of a cable dome with a diameter of 4.8 m by tensing diagonal cables.The behavior of the model in the form finding process was investigated.The experimental results indicate that the ini-tial lengths of members and prestress loss are key issues in cable domes design.The results also prove that the methods of form finding and force finding proposed in this paper are reliable and effective.展开更多
文摘Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.
基金Supported by the National Natural Science Foundation of China(50974059)
文摘Provided the results of a research conducted to investigate the relationships between the empirical vibration attenuation equation of Peak Particle Velocity (PPV) and the Scaled Charge (SC) through testing the blasting-induced vibrations on the spot of Wanshishan tunnel based on 96 vibration recordings. It is found that the maximum charge amount per delay in Wanshishan tunnel excavating is determined by the buildings on the surface and the constructed tunnel nearby. Considering that the repeated blast loading in tunnel blasting caused accumulative effects of damage on buildings, comfortable threshold damage limits of PPV to maintain buildings safety was given. Dynamic Stress Ratio (DSR) was adopted to study the stability of constructed tunnel on the action of blasting induced vibrations. The method to determine specific maximum charge amount per delay in Wanshishan tunnel excavation was given. It is proved that the findings in this study are very effective to control the negative effects of blasting-induced vibrations on buildings on the surface and constructed tunnel nearby.
文摘A cable dome has no stiffness or load carrying capacity unless it has been prestressed.Analyses of cable domes are based on successful prestressing designs,making force finding analysis very important.A new force finding method named the imbal-ance force iterative method is proposed,which can overcome some limitations of the integrity feasible prestressing method.For instance,even if groups are assigned by mistake,the pretension distribution that satisfies the known geometry form can also be found.This method possess good stability and calculation efficiency,and a case study indicates that it is applicable to the force finding of large and complicated cable domes.On the other hand,form finding analysis of cable domes is also a key engineering problem.However,rigid displacement occurs in this process,which makes the analysis more complex.In this pa-per,the dynamic relaxation method was selected,and the problem of rigid displacement was therefore effectively solved.The method includes two steps:first,the stretching cables are released,and secondly,an axial force is imposed on the two ends of each released cable.This method is convenient in its calculation and clear in its conception.A case study indicates that the method is suitable for the simulation of the construction process of various cable domes and cable-strut tension structures.Moreover,a form finding experiment was conducted on a model of a cable dome with a diameter of 4.8 m by tensing diagonal cables.The behavior of the model in the form finding process was investigated.The experimental results indicate that the ini-tial lengths of members and prestress loss are key issues in cable domes design.The results also prove that the methods of form finding and force finding proposed in this paper are reliable and effective.