Using an equation-of-motion technique, we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of state...Using an equation-of-motion technique, we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system by solving Green function. Our results reveal that the density of states show some noticeable characteristics not only depending upon the interdot coupling tab, the energy level eal of the side coupled quantum dot QDb, and the relative angle θ of magnetic moment M, but also the asymmetry parameter a in ferromagnetic leads and so on. All these parameters greatly influence the density of states of the eentral quantum dot QDa. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronies.展开更多
基金Supported by the Scientific Research Fund of Southwest Petroleum University
文摘Using an equation-of-motion technique, we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system by solving Green function. Our results reveal that the density of states show some noticeable characteristics not only depending upon the interdot coupling tab, the energy level eal of the side coupled quantum dot QDb, and the relative angle θ of magnetic moment M, but also the asymmetry parameter a in ferromagnetic leads and so on. All these parameters greatly influence the density of states of the eentral quantum dot QDa. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronies.