针对灰狼优化算法(Grey Wolf Optimizer, GWO)寻优精度低、收敛速度慢的问题,提出了一种基于IMQ惯性权重策略的自适应灰狼优化算法(ISGWO)。该算法利用IMQ函数的特性,实现对惯性权重的非线性调整,从而更好地平衡算法的全局勘探能力和局...针对灰狼优化算法(Grey Wolf Optimizer, GWO)寻优精度低、收敛速度慢的问题,提出了一种基于IMQ惯性权重策略的自适应灰狼优化算法(ISGWO)。该算法利用IMQ函数的特性,实现对惯性权重的非线性调整,从而更好地平衡算法的全局勘探能力和局部开发能力;同时,基于Sigmoid指数函数自适应更新个体位置,更好地搜索和优化问题的解空间。采用6个基本函数和29个CEC2017函数对ISGWO进行测试,并与6种常用的算法进行比较,实验结果表明ISGWO具有更优的收敛精度和速度。展开更多
文摘针对灰狼优化算法(Grey Wolf Optimizer, GWO)寻优精度低、收敛速度慢的问题,提出了一种基于IMQ惯性权重策略的自适应灰狼优化算法(ISGWO)。该算法利用IMQ函数的特性,实现对惯性权重的非线性调整,从而更好地平衡算法的全局勘探能力和局部开发能力;同时,基于Sigmoid指数函数自适应更新个体位置,更好地搜索和优化问题的解空间。采用6个基本函数和29个CEC2017函数对ISGWO进行测试,并与6种常用的算法进行比较,实验结果表明ISGWO具有更优的收敛精度和速度。