The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of...The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of S<SUB>2</SUB>O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm<SUP>-1</SUP>. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S<SUB>2</SUB>O in the electronic ground state.展开更多
The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equ...The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.展开更多
This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between th...This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.展开更多
基金The project supported by National Natural Science Foundation of China and partly by the Science Foundation of Shandong Province of China
文摘The vibration states of transition molecule S<SUB>2</SUB>O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups . We get all the vibration spectra of S<SUB>2</SUB>O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm<SUP>-1</SUP>. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S<SUB>2</SUB>O in the electronic ground state.
基金Project(50605060) supported by the National Natural Science Foundation of ChinaProject(20050056058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(06YFJMJC03300) supported by the National Science Foundation of Tianjin,China
文摘The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.
文摘This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.