When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fie...When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.展开更多
A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations...A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.展开更多
This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves t...This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves the optimality conditions like the traditional indirect methods do, but uses a discretization technique inspired from direct methods. Compared with other indirect approaches, the proposed approach has two main advantages: (1) the discretized optimization problem only employs unconstrained nonlinear programming (NLP) algorithms such as BFGS (Broyden-Fletcher-Goldfarb-Shanno), rather than constrained NLP algorithms, therefore the computational efficiency is increased; (2) the relationship between the number of the discretized time intervals and the integration error of the four-step Adams predictor-corrector algorithm is established, thus the minimal number of time intervals that under desired integration tolerance can be estimated. The classic batch reactor problem is tested and compared in detail with literature reports, and the results reveal the effectiveness of the proposed approach. Dealing with path constraints requires extra techniques, and will be studied in the second paper.展开更多
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10175029, 10375039, and 10647007, the Doctoral Education Fund of Ministry of Education, the Research Fund of Nuclear Theory Center of HIRFL of China, and the Science and Technology Foundation of Sichuan Province under Grant No. 02GY029-189
文摘When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.
文摘A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.
基金Supported by the National Natural Science Foundation of China (U1162130)the National High Technology Research and Development Program of China (2006AA05Z226)the Outstanding Youth Science Foundation,Zhejiang Province (R4100133)
文摘This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves the optimality conditions like the traditional indirect methods do, but uses a discretization technique inspired from direct methods. Compared with other indirect approaches, the proposed approach has two main advantages: (1) the discretized optimization problem only employs unconstrained nonlinear programming (NLP) algorithms such as BFGS (Broyden-Fletcher-Goldfarb-Shanno), rather than constrained NLP algorithms, therefore the computational efficiency is increased; (2) the relationship between the number of the discretized time intervals and the integration error of the four-step Adams predictor-corrector algorithm is established, thus the minimal number of time intervals that under desired integration tolerance can be estimated. The classic batch reactor problem is tested and compared in detail with literature reports, and the results reveal the effectiveness of the proposed approach. Dealing with path constraints requires extra techniques, and will be studied in the second paper.