期刊文献+
共找到741篇文章
< 1 2 38 >
每页显示 20 50 100
基于动态神经网络NARX时间序列的双排桩基坑变形预测 被引量:1
1
作者 侯福昌 曾家俊 +2 位作者 江杰 李结全 范懿文 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第1期49-59,共11页
针对目前基于含基本假设或经验公式的传统土力学计算方法,不能有效地反映具有多因素交叉性以及时空性的基坑变形规律,而监测数据时间序列能够真实地表现基坑土体变形的演变,以南宁市亭洪路72号河南水厂住宅小区危旧房改造项目双排桩基... 针对目前基于含基本假设或经验公式的传统土力学计算方法,不能有效地反映具有多因素交叉性以及时空性的基坑变形规律,而监测数据时间序列能够真实地表现基坑土体变形的演变,以南宁市亭洪路72号河南水厂住宅小区危旧房改造项目双排桩基坑工程为依托,考虑开挖深度和土体暴露时间这2个因素对监测时间序列的影响,提出一种带有外部输入的非线性自回归(NARX)动态神经网络时间序列模型,多方位预测关键断面重要测点的竖向位移和水平位移。结果表明:预测值和实际监测数据的变化趋势具有较好的一致性,且竖向位移预测值与实际监测值的预测残差小于1.0 mm,水平位移预测残差小于0.3 mm。该模型预测效果良好,同时验证了此模型应用于双排桩基坑变形动态分析的可行性。 展开更多
关键词 动态神经网络 时间序列 预测模型 双排桩 基坑变形
下载PDF
基于动态时间规整和神经网络的方言辨识研究 被引量:9
2
作者 钱盛友 许慧燕 《计算机工程与应用》 CSCD 北大核心 2008年第10期211-213,共3页
汉语方言辨识技术的研究不仅有利于提高方言语音识别系统的识别效率,而且对于公安部门的刑事侦查等方面都具有非常重要的应用价值。以湖南方言作为研究对象,对不同方言特征的差异及方言辨识中特征参量的合适选取进行了深入研究。针对语... 汉语方言辨识技术的研究不仅有利于提高方言语音识别系统的识别效率,而且对于公安部门的刑事侦查等方面都具有非常重要的应用价值。以湖南方言作为研究对象,对不同方言特征的差异及方言辨识中特征参量的合适选取进行了深入研究。针对语音信号具有很强的随机性而神经网络的输入结构相对固定等特点,提出了基于动态时间规整和神经网络的方言辨识方法。实验结果表明,选取相同的特征参数时对不同类别或不同声调的方言的辩识率不同。 展开更多
关键词 方言辨识 语音特征 动态时间规整 神经网络
下载PDF
用于多元时间序列预测的图神经网络模型
3
作者 张晗 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2500-2509,共10页
现有用于多元时序预测的图神经网络模型大多基于预定义图以静态的方式捕捉时序特征,缺少对于系统动态适应和对时序样本之间潜在动态关系的捕捉.提出用于多元时序预测的图神经网络模型(MTSGNN).该模型在一个图学习模块中,采用数据驱动的... 现有用于多元时序预测的图神经网络模型大多基于预定义图以静态的方式捕捉时序特征,缺少对于系统动态适应和对时序样本之间潜在动态关系的捕捉.提出用于多元时序预测的图神经网络模型(MTSGNN).该模型在一个图学习模块中,采用数据驱动的方式学习时间序列数据的静态图和动态演化图,以捕捉时序样本之间的复杂关系.通过图交互模块实现静态图和动态图之间的信息交互,并使用卷积运算提取交互信息中的依赖关系.利用多层感知机对多元时序进行预测.实验结果表明,所提模型在6个真实的多元时间序列数据集上的预测效果显著优于当前最先进的方法,并且具有参数量较小、运算速度较快的优点. 展开更多
关键词 多元时间序列 神经网络 静态图 动态 图交互
下载PDF
动态图神经网络链接预测综述
4
作者 张其 陈旭 +2 位作者 王叔洋 景永俊 宋吉飞 《计算机工程与应用》 CSCD 北大核心 2024年第20期49-67,共19页
在现实世界中,复杂的动态网络数据广泛存在,如社交网络、蛋白质相互作用网络和传染病传播网络,它们由大量的节点和边构成。针对这类数据的有效挖掘和利用,以进行精准预测,成为了一项关键任务。动态图神经网络链接预测是深度学习研究领... 在现实世界中,复杂的动态网络数据广泛存在,如社交网络、蛋白质相互作用网络和传染病传播网络,它们由大量的节点和边构成。针对这类数据的有效挖掘和利用,以进行精准预测,成为了一项关键任务。动态图神经网络链接预测是深度学习研究领域的一个重要分支,它旨在解析网络随时间演化的内在规律,并预测未来可能形成的链接,为各领域的决策提供有价值的信息和依据。回顾了动态图神经网络的发展历程,介绍动态图的建模方法和训练流程。在此基础上,根据时间粒度的不同,将动态图神经网络链接预测模型细分为离散动态图模型和连续动态图模型两大类,并综述了每一类别中当前主流模型所采用的建模方法;介绍了动态图链接预测研究中常用的数据集、评价指标和应用场景。最后,对该领域的未来发展趋势进行了前瞻性探讨。 展开更多
关键词 神经网络 深度学习 动态图学习 链接预测 时间
下载PDF
一种时间规整算法在神经网络语音识别中的应用 被引量:9
5
作者 史笑兴 顾明亮 +1 位作者 王太君 何振亚 《东南大学学报(自然科学版)》 EI CAS CSCD 1999年第5期47-51,共5页
提出一种新的网络结构,这种网络能够很好地解决神经网络语音识别中的时间规整问题.该网络从输入语音信号的特征矢量序列中提取一组固定数目的特征矢量,然后将这组特征矢量馈入神经网络分类器进行识别.和其他的神经网络语音识别方法... 提出一种新的网络结构,这种网络能够很好地解决神经网络语音识别中的时间规整问题.该网络从输入语音信号的特征矢量序列中提取一组固定数目的特征矢量,然后将这组特征矢量馈入神经网络分类器进行识别.和其他的神经网络语音识别方法相比较,用这种网络进行前端处理,可以缩短后端神经网络分类器的训练和识别时间,简化分类器的网络结构并保持较高的识别率. 展开更多
关键词 时间规整算法 神经网络 语音识别
下载PDF
人工神经网络软测量仪表延迟时间处理及动态特性研究 被引量:7
6
作者 杜殿林 左信 +1 位作者 罗雄麟 吴重光 《化工自动化及仪表》 EI CAS 2005年第5期47-49,共3页
采用BP和RBF网络,开发了人工神经网络软测量仪表软件,实现了不可测变量的在线观测。讨论并解决了延迟时间的确定与处理、动态特性的拟合等主要难点问题。利用三层BP网络辨识出非线性对象的延迟时间;采用将输出量引入到多层静态神经网络... 采用BP和RBF网络,开发了人工神经网络软测量仪表软件,实现了不可测变量的在线观测。讨论并解决了延迟时间的确定与处理、动态特性的拟合等主要难点问题。利用三层BP网络辨识出非线性对象的延迟时间;采用将输出量引入到多层静态神经网络的入口和对输入数据进行衰减加权的方法,完成对系统动态特性的表征,使所开发的神经网络软测量仪表更真实地反映了系统的静态和动态性能,准确性高且有更好的适应性。 展开更多
关键词 人工神经网络 软测量 非线性系统 延迟时间 动态特性
下载PDF
基于模糊神经网络卡车路段行程时间实时动态预测 被引量:2
7
作者 李建刚 白润才 +1 位作者 郭嗣琮 毛君 《煤炭学报》 EI CAS CSCD 北大核心 2005年第6期796-800,共5页
提出了一种基于模糊神经网络卡车路段行程时间实时预测模型,阐述了自适应神经网络模糊系统(Adaptive Network-based Fuzzy Inference System,ANFIS)网络原理和方法对行程时间预测的可行性和可靠性,采用最小二乘法和误差反传算法结合的... 提出了一种基于模糊神经网络卡车路段行程时间实时预测模型,阐述了自适应神经网络模糊系统(Adaptive Network-based Fuzzy Inference System,ANFIS)网络原理和方法对行程时间预测的可行性和可靠性,采用最小二乘法和误差反传算法结合的混合学习算法,减少了搜索空间的维数,而采用的减法聚类方法减少了模糊推理规则.混合学习算法和减法聚类方法的应用提高了网络参数的辨识和收敛速度.实例仿真论证了该模型预测速度更快、准确性更高,实时性好,获得了比单纯使用神经网络或模糊理论更精确的预测结果. 展开更多
关键词 模糊神经网络 卡车 路段行程时间 实时动态预测
下载PDF
基于时间序列BP神经网络的集装箱吞吐量动态预测 被引量:27
8
作者 刘长俭 张庆年 《水运工程》 北大核心 2007年第1期4-7,11,共5页
集装箱吞吐量预测是港口发展规划制定的依据。在MATLAB环境下,把时间序列BP神经网络应用于港口集装箱吞吐量的预测,采用逐步递归的方法进行,同时注意尽量减少训练样本的浪费(只用1个检验样本)和充分挖掘BP神经网络适合短期预测的潜力。... 集装箱吞吐量预测是港口发展规划制定的依据。在MATLAB环境下,把时间序列BP神经网络应用于港口集装箱吞吐量的预测,采用逐步递归的方法进行,同时注意尽量减少训练样本的浪费(只用1个检验样本)和充分挖掘BP神经网络适合短期预测的潜力。无论是从拟合情况,还是预测值的检验和港口发展规划的实际情况来看,都有着很高的精度,可以作为集装箱吞吐量预测的一种行之有效的方法。 展开更多
关键词 动态预测 时间序列 BP神经网络 集装箱吞吐量 逐层递归
下载PDF
动态非线性连续时间系统的小波神经网络辨识 被引量:3
9
作者 张兆宁 喻文焕 郁惟镛 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第5期709-712,共4页
将小波神经网络应用于动态非线性连续时间系统的辨识 ,同时为了使神经网络的训练达到全局最优和加速小波神经网络训练的收敛速度 ,提出了信赖域算法 ,并研究了信赖域算法的收敛性 .随后进行了算例仿真 ,证明了所提辨识方法的有效性 .
关键词 动态非线性连续时间系统 小波 神经网络 辨识 非参数辨识 系统辨识
下载PDF
时间递推耦合神经网络的交通路径动态诱导技术 被引量:4
10
作者 崔铁军 马云东 《计算机应用研究》 CSCD 北大核心 2013年第10期2932-2935,共4页
通过"人—机—环境"耦合关系,对路况与时间变化关系进行研究。综合车辆运行过程中不同时段的路况差异和人因作用、突发道路事故随机性,以神经网络有师学习作为经验累积方法,提出时间递推预测方法确定路径最短时间,从而实现对... 通过"人—机—环境"耦合关系,对路况与时间变化关系进行研究。综合车辆运行过程中不同时段的路况差异和人因作用、突发道路事故随机性,以神经网络有师学习作为经验累积方法,提出时间递推预测方法确定路径最短时间,从而实现对交通路径的动态诱导。递推预测以知识库累积经验与实时路况信息作比较,为驾驶者提供实时有效的路况信息支撑。结果表明,该诱导技术可辅助驾驶者及时对路况作出正确判断,减少因经验不足和突发事件造成的时间损失,适用于安装有GPS导航的车辆。实例分析表明,所构建模型与实际数据结合收到良好效果。 展开更多
关键词 交通路径 动态诱导 时间递推 神经网络 预测与寻找
下载PDF
时间序列神经网络动态建模研究 被引量:3
11
作者 滕虎 王永胜 姚平经 《大连理工大学学报》 CAS CSCD 北大核心 2002年第2期163-167,共5页
采用一种改进的时间序列神经网络用于过程系统的动态建模 .该网络将输入变量的时间序列数据作为网络输入 ,同时以系统的脉冲响应系数为时间序列输入数据的权值 ,赋予神经网络模型一定的物理意义 ,从而使神经网络模型获得更好的外延性 。
关键词 脉冲响应 动态建模 时间序列神经网络 时间序列分析 非线性系统 化工过程 网络结构
下载PDF
基于动态学习比率BP神经网络的时间序列预测方法 被引量:3
12
作者 丁守銮 王洁贞 胡平 《中国卫生统计》 CSCD 北大核心 2002年第4期194-198,共5页
目的 探讨人工神经网络在时间序列资料分析中的应用。方法 利用动态学习比率BP算法以双曲正切函数为功能函数的非线性时间序列预测方法。结果 建立HFRS发病率的两种ANN预测模型 ,其预测精度远远高于传统方法。结论 BP人工神经网络... 目的 探讨人工神经网络在时间序列资料分析中的应用。方法 利用动态学习比率BP算法以双曲正切函数为功能函数的非线性时间序列预测方法。结果 建立HFRS发病率的两种ANN预测模型 ,其预测精度远远高于传统方法。结论 BP人工神经网络可以用于疾病发病率或死亡率的预测。 展开更多
关键词 BP人工神经网络 非线性时间序列 动态学习比率 发病率 医学统计学
下载PDF
动态误差时间序列小波神经网络预测模型 被引量:2
13
作者 丁晓牧 金施群 费业泰 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第6期1127-1130,共4页
基于现代误差修正技术,研究小波神经网络建立的动态测量误差预测模型,以进行误差修正,提高动态测量精度,避免了传统神经网络需要人为干预网络结构参数的不足。文章介绍了建模方法,重点对大轴圆度误差测量过程中的动态测量数据进行实例分... 基于现代误差修正技术,研究小波神经网络建立的动态测量误差预测模型,以进行误差修正,提高动态测量精度,避免了传统神经网络需要人为干预网络结构参数的不足。文章介绍了建模方法,重点对大轴圆度误差测量过程中的动态测量数据进行实例分析,结果表明,该模型预测精度高,具有重要的应用价值。 展开更多
关键词 动态误差时间序列 小波神经网络 误差修正 傅里叶变换 小波分析 测量系统
下载PDF
基于混沌时间序列的非线性动态系统神经网络建模与预测 被引量:4
14
作者 郁俊莉 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2005年第3期286-290,共5页
在分析神经网络非线性建模原理的基础上,以典型的非线性差分方程为研究对象,提出了一类基于神经网络的非线性动态系统建模方法.针对传统BP算法的局限性,提出了一种非线性动态系统神经网络改善梯度估计精度的新算法.并以上证综合指数时... 在分析神经网络非线性建模原理的基础上,以典型的非线性差分方程为研究对象,提出了一类基于神经网络的非线性动态系统建模方法.针对传统BP算法的局限性,提出了一种非线性动态系统神经网络改善梯度估计精度的新算法.并以上证综合指数时间序列为研究对象,运用本文提出的建模方法和算法,进行了我国资本市场混沌时间序列预测研究的实例分析,得到的单步预测上证综合指数误差很小(-100~100);多步预测在最初的10步之内预测效果较为理想,而在此之后的预测值则严重偏离真实值.这与混沌时间序列特性相吻合,同时也证明了所用算法的有效性. 展开更多
关键词 混沌时间序列 非线性动态系统 神经网络 BP算法
下载PDF
基于神经网络的动态响应时间序列预测 被引量:1
15
作者 于霖冲 白广忱 焦俊婷 《微计算机信息》 北大核心 2007年第06S期303-304,240,共3页
研究目的是建立复杂非线性动态响应时间序列预测模型。摩擦和柔性的影响使柔性机构动态响应为高度非线性,实时控制的难度很大。应用改进的Elman动态神经网络技术,建立了柔性机构运动参数动态响应预测模型,对柔性机构的运动参数进行实时... 研究目的是建立复杂非线性动态响应时间序列预测模型。摩擦和柔性的影响使柔性机构动态响应为高度非线性,实时控制的难度很大。应用改进的Elman动态神经网络技术,建立了柔性机构运动参数动态响应预测模型,对柔性机构的运动参数进行实时预测。通过机构动态响应的预测实例,证明该方法计算速度较快,精度较高,为实现复杂大系统的实时控制提供了一个有效可行的方法。 展开更多
关键词 ELMAN神经网络 机构 动态响应 时间序列 预测
下载PDF
时间序列预测的动态神经网络方法 被引量:3
16
作者 韩卫华 宁佐贵 《微机发展》 2004年第9期40-41,共2页
时间序列的预测在经济和工程领域具有十分重要的意义。文中利用动态神经网络的特性,提出对时间序列进行预测的动态神经网络方法,并利用设计的动态神经网络对杜芬(Duffing)方程的响应时间序列进行预测,结果表明动态神经网络可以较好地对... 时间序列的预测在经济和工程领域具有十分重要的意义。文中利用动态神经网络的特性,提出对时间序列进行预测的动态神经网络方法,并利用设计的动态神经网络对杜芬(Duffing)方程的响应时间序列进行预测,结果表明动态神经网络可以较好地对动态系统的响应时间序列进行预测。 展开更多
关键词 时间序列预测 动态神经网络 动态系统 响应时间序列 数据预测
下载PDF
基于主成分分析和动态神经网络的时间序列预报 被引量:3
17
作者 严其艳 《中国西部科技》 2009年第10期27-28,共2页
本文提出一种基于主成分分析(PCA)和动态神经网络的多变量时间序列预报方法,并对具体实例建立多变量时间序列模型。仿真实验结果表明该网络具有很强的学习能力和泛化能力,适合进行非线性时间序列预报。
关键词 PCA 动态递归神经网络 时间序列预报
下载PDF
基于动态图卷积神经网络的运动想象脑电信号研究
18
作者 周正康 袁之正 +2 位作者 颜亨 李玉 李舒然 《计算机科学与应用》 2024年第4期268-275,共8页
运动想象是一种认知神经科学领域的概念,指的是在不实际运动的情况下,通过想象运动来激活大脑相应区域的神经元。传统的CNN在处理EEG信号时存在劣势,因为EEG信号是一种时间序列数据,而CNN并不擅长处理这种类型的数据,导致无法充分挖掘... 运动想象是一种认知神经科学领域的概念,指的是在不实际运动的情况下,通过想象运动来激活大脑相应区域的神经元。传统的CNN在处理EEG信号时存在劣势,因为EEG信号是一种时间序列数据,而CNN并不擅长处理这种类型的数据,导致无法充分挖掘时间相关性和特征信息,影响了模型的性能和准确性。为了解决这一问题,本文使用动态图卷积和时间卷积来处理EEG数据,该方法能够有效地捕捉信号之间的时间依赖关系和动态变化,从而提高了模型在处理EEG信号时的性能和准确性。动态图卷积的优势在于能够更好地适应时间序列数据的特点,提高了模型在提取特征和预测方面的效果,有效解决了传统CNN在处理EEG信号时的劣势,为脑机接口技术等领域的发展带来了新的可能性。该方法主要过程如下:首先,EEG信号被输入到卷积滤波器进行处理,过滤成八个子频带后,分别输入到八个动态图卷积神经网络(DGCNN)中。最后,这些网络被串联起来,输入到一个时域卷积网络(TCN)中进行特征提取。在公开数据集上,DGCNN模型的平均分类准确率(82.5 ± 4.3%)优于传统的CNN模型(68.9 ± 3.6%)。 展开更多
关键词 运动想象 动态图卷积神经网络 时间卷积网络 脑机接口
下载PDF
基于动态滑动窗口BP神经网络的水质时间序列预测 被引量:18
19
作者 张梦迪 徐庆 +2 位作者 刘振鸿 马春燕 高品 《环境工程技术学报》 CSCD 北大核心 2022年第3期809-815,共7页
为提高BP神经网络(BPNN)模型对具有时间序列特征水质的预测精准度,采用主成分分析法对原始样本数据进行特征提取和降维,选取溶解性有机碳(DOC)浓度、总氮(TN)浓度和浊度作为水质预测指标,构建了具有3层网络结构的BPNN模型进行预测,并分... 为提高BP神经网络(BPNN)模型对具有时间序列特征水质的预测精准度,采用主成分分析法对原始样本数据进行特征提取和降维,选取溶解性有机碳(DOC)浓度、总氮(TN)浓度和浊度作为水质预测指标,构建了具有3层网络结构的BPNN模型进行预测,并分析其预测性能。结果表明:DOC浓度、TN浓度和浊度的最佳训练集尺寸分别为60、60和90 d,最佳BPNN拓扑结构分别为9-12-1、8-6-1和7-13-1,经优化后的BPNN模型对DOC浓度、TN浓度和浊度的变化趋势整体预测效果较好;相比之下,BPNN模型对水中DOC浓度的预测效果显著优于TN浓度和浊度,其均方根误差(RMSE)、平均绝对百分比误差(MAPE)和相关系数(R)分别为0.040、0.66%和0.867。该模型对具有非线性特征的地表水水质预测具有较好的适用性,预测精度较高。 展开更多
关键词 BP神经网络 动态滑动窗口 水质时间序列 主成分分析法
下载PDF
MN-HDRM:长短兴趣多神经网络混合动态推荐模型 被引量:20
20
作者 冯永 张备 +2 位作者 强保华 张逸扬 尚家兴 《计算机学报》 EI CSCD 北大核心 2019年第1期16-28,共13页
动态推荐系统通过学习动态变化的兴趣特征来考虑推荐系统中的动态因素,实现推荐任务随着时间变化而实时更新.该文提出一种携带历史元素的循环神经网络(Recurrent Neural Networks,简称RNN)推荐模型负责用户短期动态兴趣建模,而利用基于... 动态推荐系统通过学习动态变化的兴趣特征来考虑推荐系统中的动态因素,实现推荐任务随着时间变化而实时更新.该文提出一种携带历史元素的循环神经网络(Recurrent Neural Networks,简称RNN)推荐模型负责用户短期动态兴趣建模,而利用基于前馈神经网络(Feedforward Neural Networks,简称FNN)的推荐模型对用户长期兴趣建模.通过两种神经网络的融合,该文构建了一个兼顾用户短期动态兴趣和稳定长期兴趣的多神经网络混合动态推荐模型(Hybrid Dynamic Recommendation Model based on Multiple Neural Networks,简称MN-HDRM).实验结果表明相对于目前比较流行的多种动态推荐算法:TimeSVD++、基于HMM(Hidden Markov Model)的推荐模型、基于RNN(Recurrent Neural Networks)的推荐模型、基于LSTM(Long Short-Term Memory)的推荐模型和STG(Session-based Temporal Graph)推荐模型,MN-HDRM在精确率、召回率和平均倒数排名等多项评价指标上展现出更加优越的性能. 展开更多
关键词 循环神经网络 前馈神经网络 动态推荐模型 长短期兴趣 时间因素
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部