A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models ...A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models were used.The ghost and real static object could be classified by comparing the similarity of the edge images further.In each group,the multi resolution Gaussian mixture models were used and dual thresholds were applied in every resolution in order to get a complete object mask without much noise.The computational color model was also used to depress illustration variations and light shadows.The proposed method was verified by the public test sequences provided by the IEEE Change Detection Workshop and compared with three state-of-the-art methods.Experimental results demonstrate that the proposed method is better than others for all of the evaluation parameters in intermittent object motion sequences.Four and two in the seven evaluation parameters are better than the others in thermal and dynamic background sequences,respectively.The proposed method shows a relatively good performance,especially for the intermittent object motion sequences.展开更多
Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation...Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation between neighboring pixels can be used to achieve high levels of detection accuracy in the presence of dynamic background. However, color similarity between foreground and background will cause many foreground pixels to be misclassified. In this paper, an adaptive foreground model is exploited to detect moving objects in dynamic scenes. The foreground model provides an effective description of foreground by adaptively combining the temporal persistence and spatial coherence of moving objects. Building on the advantages of MAP-MRF (the maximum a posteriori in the Markov random field) decision framework, the proposed method performs well in addressing the challenging problem of missed detection caused by similarity in color between foreground and background pixels. Experimental results on real dynamic scenes show that the proposed method is robust and efficient.展开更多
It is shown that bright-dark Manakov solitons can be formed in biased guest-host photorefractive polymer when the total intensity of two components is much lower than the background illumination. The existing conditio...It is shown that bright-dark Manakov solitons can be formed in biased guest-host photorefractive polymer when the total intensity of two components is much lower than the background illumination. The existing conditions of bright-dark Manakov solitons are discussed in detail. The intensity profiles and dynamical evolutions of solitons are presented by numericaJ methods.展开更多
基金Project(T201221207)supported by the Fundamental Research Fund for the Central Universities,ChinaProject(2012CB725301)supported by National Basic Research and Development Program,China
文摘A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models were used.The ghost and real static object could be classified by comparing the similarity of the edge images further.In each group,the multi resolution Gaussian mixture models were used and dual thresholds were applied in every resolution in order to get a complete object mask without much noise.The computational color model was also used to depress illustration variations and light shadows.The proposed method was verified by the public test sequences provided by the IEEE Change Detection Workshop and compared with three state-of-the-art methods.Experimental results demonstrate that the proposed method is better than others for all of the evaluation parameters in intermittent object motion sequences.Four and two in the seven evaluation parameters are better than the others in thermal and dynamic background sequences,respectively.The proposed method shows a relatively good performance,especially for the intermittent object motion sequences.
基金Project (Nos 60602012 and 60675023) supported by the National Natural Science Foundation of Chinathe National High-Tech Re-search and Development Program (863) of China (No 2007AA01Z 164)the Shanghai Key Laboratory Opening Plan Grant (No.06dz22103),China
文摘Accurate detection of moving objects is an important step in stable tracking or recognition. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, the correlation between neighboring pixels can be used to achieve high levels of detection accuracy in the presence of dynamic background. However, color similarity between foreground and background will cause many foreground pixels to be misclassified. In this paper, an adaptive foreground model is exploited to detect moving objects in dynamic scenes. The foreground model provides an effective description of foreground by adaptively combining the temporal persistence and spatial coherence of moving objects. Building on the advantages of MAP-MRF (the maximum a posteriori in the Markov random field) decision framework, the proposed method performs well in addressing the challenging problem of missed detection caused by similarity in color between foreground and background pixels. Experimental results on real dynamic scenes show that the proposed method is robust and efficient.
基金Supported by the Natural Science Foundation of Shanxi Province under Grant No. 2011011003-2the Science and Technology Development Foundation of Higher Education of Shanxi Province under Grant No. 20111125
文摘It is shown that bright-dark Manakov solitons can be formed in biased guest-host photorefractive polymer when the total intensity of two components is much lower than the background illumination. The existing conditions of bright-dark Manakov solitons are discussed in detail. The intensity profiles and dynamical evolutions of solitons are presented by numericaJ methods.