The direct motion of Brownian particle is considered as a result of system derived by external nonequilibriumfluctuating. The cooperative effects caused by asymmetric ratchet potential, external rocking force and addi...The direct motion of Brownian particle is considered as a result of system derived by external nonequilibriumfluctuating. The cooperative effects caused by asymmetric ratchet potential, external rocking force and additive colorednoise drive a Brownian particle in the directed stepping motion. This provides this kind of motion of kinesin along amicrotubule observed in experiments with a reasonable explanation.展开更多
Thanks to the special physical architectures and various locomotion gaits,snake robots may offer significant benefits over traditional legged or wheeled locomotion designs in vast types of scenarios.This paper propose...Thanks to the special physical architectures and various locomotion gaits,snake robots may offer significant benefits over traditional legged or wheeled locomotion designs in vast types of scenarios.This paper proposes an innovative snake robot with digitally-actuated Stewart platforms as its modules and mainly focuses on the simulations of various snake gaits.Three categories of fitting algorithms are elaborated in simulations of lateral undulation and Configuration-Fitting Algorithm of Four Modules is demonstrated as a universal gait fitting algorithm for all kinds of snake robots with binary actuators.Several typical snake gaits are simulated and the results demonstrate the excellent mobility of the snake robot.展开更多
文摘The direct motion of Brownian particle is considered as a result of system derived by external nonequilibriumfluctuating. The cooperative effects caused by asymmetric ratchet potential, external rocking force and additive colorednoise drive a Brownian particle in the directed stepping motion. This provides this kind of motion of kinesin along amicrotubule observed in experiments with a reasonable explanation.
基金supported by the Research Fund of State Key Laboratory of Mechanical System and Vibration,China(Grant No.MSV-2010-07)
文摘Thanks to the special physical architectures and various locomotion gaits,snake robots may offer significant benefits over traditional legged or wheeled locomotion designs in vast types of scenarios.This paper proposes an innovative snake robot with digitally-actuated Stewart platforms as its modules and mainly focuses on the simulations of various snake gaits.Three categories of fitting algorithms are elaborated in simulations of lateral undulation and Configuration-Fitting Algorithm of Four Modules is demonstrated as a universal gait fitting algorithm for all kinds of snake robots with binary actuators.Several typical snake gaits are simulated and the results demonstrate the excellent mobility of the snake robot.