Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the eq...Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.展开更多
Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic ...Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic strength of the chamber were analyzed by measuring the strain profiles of six characteristic points on the chamber.The research results revealed the rule of the dynamic response of the chamber on different explosive loads and static pressures.It provides references for the design and development of the chamber to simulate deepwater explosion.展开更多
A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capac...A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capacity and COP (coefficient of performance) of the HPWH unit under different EXV openings were measured. The effects of the EXV opening on the performance of the HPWH unit were analyzed. Meanwhile, the dynamic performance of the HPWH with EXV was simulated and the results were compared with the experimental one. The experimental results indicate that during heating process, the COP increases firstly and then decreases for a fixed EXV opening, which is in good agreement with the numerical result. For different EXV openings, the COP and heating capacity of the system using larger EXV opening are superior to those using the smaller one in the initial heating stage. While in the late stage, the performance of system using smaller EXV opening is better. It is found that the system performance is improved significantly by changing the EXV opening in the different heating period and the average COP of the HPWH system is increased by 7.6%.展开更多
Modeling the hydrological processes at catchment scale requires a flexible distributed scheme to represent the catchment to- pography, river network and vegetation pattern. This study has developed a distributed schem...Modeling the hydrological processes at catchment scale requires a flexible distributed scheme to represent the catchment to- pography, river network and vegetation pattern. This study has developed a distributed scheme for eco-hydrological simulation in the upper Heihe River. Based on a 1 km x 1 km grid system, the study catchment is divided into 461 sub-catchments, whose main streams form the streamflow pathway. Furthermore, a 1 km grid is represented by a number of topographically similar "hillslope-valley" systems, and the hillslope is the basic unit of the eco-hydrological simulation. This model is tested with a simplified hydrological simulation focusing on soil-water dynamics and streamflow routing. Based on a 12-year simulation from 2001 to 2012, it is found that variability in hydrological behavior is closely associated with climatic and landscape condi- tions especially vegetation types. The subsurface and groundwater flows dominate the total river runoff. This implies that the soil freezing and thawing process would significantly influence the runoff generation in the upper Heihe basin. Furthermore, the runoff components and water balance characteristics vary among different vegetation types, showing the importance of coupling the vegetation pattern into catchment hydrological simulation. This paper also discusses the model improvement to be done in future study.展开更多
Drip irrigation under plastic mulch has been widely applied in arid Northwest China as a water-saving irrigation technology. A comprehensive knowledge of the distribution and movement of soil water in root zone is ess...Drip irrigation under plastic mulch has been widely applied in arid Northwest China as a water-saving irrigation technology. A comprehensive knowledge of the distribution and movement of soil water in root zone is essential for the design and management of irrigation regimes. Simulation models have been proved to be efficient methods for this purpose. In this study, the numerical model Hydrus-2D was used to simulate the temporal variations of soil water content in a drip irrigated cotton field under mulching. A concept of partitioning coefficient, calibrated to be 0.07, was introduced to describe the effect of plastic mulch on prevention of evaporation. The soil hydraulic parameters were optimized by inverse solution using the field data. At the optimized conditions, the model was used to predict soil water content for four field treatments. The agreements between the predictions and observations were evaluated using coefficient of determination (R2) and root mean square error (RMSE). The results suggested that the model fairly reproduced the variations in soil water content at all locations in four treatments, with R2 ranging from 0.582 to 0.826 and RMSE from 0.029 to 0.050 cm3 cm-3, indicating that the simulations agreed well with the observations.展开更多
Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more...Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results.展开更多
基金Supported by the National Natural Science Foundation of China(61072127) the Outstanding Young Innovative Personnel Project of Guangdong Colleges(LYM08098)
文摘Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent.
基金National Natural Science Foundation of China (No. 51174147) Hubei Province Natural Sci- ence Foundation (No. 2012FFA13)
文摘Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic strength of the chamber were analyzed by measuring the strain profiles of six characteristic points on the chamber.The research results revealed the rule of the dynamic response of the chamber on different explosive loads and static pressures.It provides references for the design and development of the chamber to simulate deepwater explosion.
文摘A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capacity and COP (coefficient of performance) of the HPWH unit under different EXV openings were measured. The effects of the EXV opening on the performance of the HPWH unit were analyzed. Meanwhile, the dynamic performance of the HPWH with EXV was simulated and the results were compared with the experimental one. The experimental results indicate that during heating process, the COP increases firstly and then decreases for a fixed EXV opening, which is in good agreement with the numerical result. For different EXV openings, the COP and heating capacity of the system using larger EXV opening are superior to those using the smaller one in the initial heating stage. While in the late stage, the performance of system using smaller EXV opening is better. It is found that the system performance is improved significantly by changing the EXV opening in the different heating period and the average COP of the HPWH system is increased by 7.6%.
基金supported by the National Natural Science Foundation of China(Grant No.91225302)
文摘Modeling the hydrological processes at catchment scale requires a flexible distributed scheme to represent the catchment to- pography, river network and vegetation pattern. This study has developed a distributed scheme for eco-hydrological simulation in the upper Heihe River. Based on a 1 km x 1 km grid system, the study catchment is divided into 461 sub-catchments, whose main streams form the streamflow pathway. Furthermore, a 1 km grid is represented by a number of topographically similar "hillslope-valley" systems, and the hillslope is the basic unit of the eco-hydrological simulation. This model is tested with a simplified hydrological simulation focusing on soil-water dynamics and streamflow routing. Based on a 12-year simulation from 2001 to 2012, it is found that variability in hydrological behavior is closely associated with climatic and landscape condi- tions especially vegetation types. The subsurface and groundwater flows dominate the total river runoff. This implies that the soil freezing and thawing process would significantly influence the runoff generation in the upper Heihe basin. Furthermore, the runoff components and water balance characteristics vary among different vegetation types, showing the importance of coupling the vegetation pattern into catchment hydrological simulation. This paper also discusses the model improvement to be done in future study.
基金Supported by the Special Fund of Industrial(Agriculture) Research for Public Welfare of China(No.200903001)the Special Fund of Industrial(Marine) Research for Public Welfare of China(Nos.201105020-3 and 201105020-4)+2 种基金the Jiangsu Provincial Science and Technology Support Program,China(No.BE2010313)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-YW-359)the National Natural Science Foundation of China(No.41171181)
文摘Drip irrigation under plastic mulch has been widely applied in arid Northwest China as a water-saving irrigation technology. A comprehensive knowledge of the distribution and movement of soil water in root zone is essential for the design and management of irrigation regimes. Simulation models have been proved to be efficient methods for this purpose. In this study, the numerical model Hydrus-2D was used to simulate the temporal variations of soil water content in a drip irrigated cotton field under mulching. A concept of partitioning coefficient, calibrated to be 0.07, was introduced to describe the effect of plastic mulch on prevention of evaporation. The soil hydraulic parameters were optimized by inverse solution using the field data. At the optimized conditions, the model was used to predict soil water content for four field treatments. The agreements between the predictions and observations were evaluated using coefficient of determination (R2) and root mean square error (RMSE). The results suggested that the model fairly reproduced the variations in soil water content at all locations in four treatments, with R2 ranging from 0.582 to 0.826 and RMSE from 0.029 to 0.050 cm3 cm-3, indicating that the simulations agreed well with the observations.
基金supported by the National Natural Science Foundation of China (No.41471177)the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-EW-QN404)the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA05050509)
文摘Reporting modeling results with uncertainty information can benefit decision making by decreasing the extent that variability exerts a disproportionate influence on the options selected. For making decisions with more confidence, the uncertainty interval should be as narrow as possible. Here, the soil organic carbon (SOC) dynamics of the major paddy soil subgroup from 4 different paddy field regions of China (located in 4 counties under different climate-soil-management combinations) were modeled using the DeNitrification- DeComposition (DNDC) model for the period from 1980 to 2008. Uncertainty intervals associated with the SOC dynamics for these 4 subgroups were estimated by a long-term global sensitivity and uncertainty analysis (i. e., the Sobolt method), and their sensitivities to 7 influential factors were quantified using the total effect sensitivity index. The results, modeled with high confidence, indicated that in the past 29 years, the studied paddy soils in Xinxing, Yixing, and Zhongjiang counties were carbon (C) sinks, while the paddy soil in Helong County was a C source. The 3 C sinks sequestered 12.2 (5.4, 19.6), 17.1 (8.9, 25.0), and 16.9 (-1.2, 33.6) t C ha-1 (values in the parentheses are the 5th and 95th percentiles, respectively). Conversely, the C source had a loss of -5.4 (-14.2, 0.06) t C ha-1 in the past 29 years. The 7 factors, which changed with the climate-soil-management context, exhibited variable influences on modeled SOC. Measures with potential to conserve or sequestrate more C into paddy soils, such as incorporating more crop residues into soils and reducing chemical fertilizer application rates, were recommended for specific soils based on the sensitivity analysis results.