Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it...Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it is closely related to the stability of a rock block.To further study the shear rate-dependent behavior of rock discontinuities,shear tests with alternating shear rates(SASRs)were conducted on rock discontinuities with various surface morphologies.The dynamic evolution of the shear rate dependency was studied in detail based on the shear test results,and three stages were identified with respect to the shear stress and shear deformation states.The test results revealed that dynamic changes in shear stiffness and the energy storage abilities of the rock discontinuities occurred in relation to the shear rate-dependent behavior of crack growth,which increased with an increase in normal stress and/or the joint roughness coefficient.The stage of decreasing shear stiffness corresponded to a stage of noticeable shear rate-dependency,and the shear rate was found to have no influence on the initial crack stress.展开更多
Combining the field monitoring results of a deep-buried tunnel in Chongqing,the dynamic characteristics of the surrounding rock system under high in situ stress wasanalyzed by phase space reconstruction, calculating c...Combining the field monitoring results of a deep-buried tunnel in Chongqing,the dynamic characteristics of the surrounding rock system under high in situ stress wasanalyzed by phase space reconstruction, calculating correlation dimension, Kolmogoroventropy and largest Lyapunov exponents.Both the Kolmogorov entropy and largestLyapunov exponents show that the surrounding rock system is a chaotic one.Based onthis, a local model was applied to predict surrounding rock displacement, and a nonlineardynamic model was derived to forecast the interaction of the surrounding rock and supportstructure.The local method was found to have an extremely small total error.Also, thenonlinear dynamic model forecasting curves agree with the monitoring ones very well.It isproved that the nonlinear dynamic characteristic study is very important in analyzing rockstability and predicting the evolution of rock systems.展开更多
基金Projects(42002266,51908288)supported by the National Natural Science Foundation of ChinaProject(2020M673654)supported by the Chinese Postdoctoral Science FoundationProject(2019K284)supported by Jiangsu Post-doctoral Research Funding Program,China。
文摘Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it is closely related to the stability of a rock block.To further study the shear rate-dependent behavior of rock discontinuities,shear tests with alternating shear rates(SASRs)were conducted on rock discontinuities with various surface morphologies.The dynamic evolution of the shear rate dependency was studied in detail based on the shear test results,and three stages were identified with respect to the shear stress and shear deformation states.The test results revealed that dynamic changes in shear stiffness and the energy storage abilities of the rock discontinuities occurred in relation to the shear rate-dependent behavior of crack growth,which increased with an increase in normal stress and/or the joint roughness coefficient.The stage of decreasing shear stiffness corresponded to a stage of noticeable shear rate-dependency,and the shear rate was found to have no influence on the initial crack stress.
基金Supported by the New Century Excellent Talent Foundation from MOE of China(NCET-09-0844)the National Natural Science Foundation of China(50804060,50621403)
文摘Combining the field monitoring results of a deep-buried tunnel in Chongqing,the dynamic characteristics of the surrounding rock system under high in situ stress wasanalyzed by phase space reconstruction, calculating correlation dimension, Kolmogoroventropy and largest Lyapunov exponents.Both the Kolmogorov entropy and largestLyapunov exponents show that the surrounding rock system is a chaotic one.Based onthis, a local model was applied to predict surrounding rock displacement, and a nonlineardynamic model was derived to forecast the interaction of the surrounding rock and supportstructure.The local method was found to have an extremely small total error.Also, thenonlinear dynamic model forecasting curves agree with the monitoring ones very well.It isproved that the nonlinear dynamic characteristic study is very important in analyzing rockstability and predicting the evolution of rock systems.