研究芯片功耗中动态功耗部分,针对传统动态节能技术动态电压与频率调节(dynamic voltage and frequency scaling,DVFS)技术未能考虑预测CPU未来阶段行为的不足,提出BP-DVFS节能策略。为了提高下一阶段CPU利用率的预测准确性,更准确地对...研究芯片功耗中动态功耗部分,针对传统动态节能技术动态电压与频率调节(dynamic voltage and frequency scaling,DVFS)技术未能考虑预测CPU未来阶段行为的不足,提出BP-DVFS节能策略。为了提高下一阶段CPU利用率的预测准确性,更准确地对CPU进行动态调频进而降低其运行功耗。构建了一种FPU-CPU(forward predict utilization CPU)模型。模型假设下一时间段CPU利用率与CPU运行资源有关的事件特征量存在非线性函数关系,从处理器运行时环境出发提取出与CPU资源紧密相关的5个特征量进行度量,采用BP神经网络进行拟合训练。用训练后得到的神经网络预测CPU下一阶段的利用率,进行CPU处理不同类型任务程序的功耗仿真实验。并在相同实验条件下与常用的3种CPU调频策略实验结果进行对比。实验结果表明,在CPU处理不同类型任务程序时,采用BP-DVFS策略进行调频的CPU功耗都低于其他3种策略进行调频的CPU功耗。通过实验验证,本文提出的方法提高了预测CPU利用率的准确度,降低了CPU运行时功耗。同时验证了假设的合理性与有效性以及此方法实现CPU低功耗运行是有效的。展开更多
文摘研究芯片功耗中动态功耗部分,针对传统动态节能技术动态电压与频率调节(dynamic voltage and frequency scaling,DVFS)技术未能考虑预测CPU未来阶段行为的不足,提出BP-DVFS节能策略。为了提高下一阶段CPU利用率的预测准确性,更准确地对CPU进行动态调频进而降低其运行功耗。构建了一种FPU-CPU(forward predict utilization CPU)模型。模型假设下一时间段CPU利用率与CPU运行资源有关的事件特征量存在非线性函数关系,从处理器运行时环境出发提取出与CPU资源紧密相关的5个特征量进行度量,采用BP神经网络进行拟合训练。用训练后得到的神经网络预测CPU下一阶段的利用率,进行CPU处理不同类型任务程序的功耗仿真实验。并在相同实验条件下与常用的3种CPU调频策略实验结果进行对比。实验结果表明,在CPU处理不同类型任务程序时,采用BP-DVFS策略进行调频的CPU功耗都低于其他3种策略进行调频的CPU功耗。通过实验验证,本文提出的方法提高了预测CPU利用率的准确度,降低了CPU运行时功耗。同时验证了假设的合理性与有效性以及此方法实现CPU低功耗运行是有效的。