The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which la...The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.展开更多
Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the ...Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the mechanism of rock tensile failure caused by this coupled stress mode,the Brazilian disc tests were carried on red sandstone under high pre-static load induced by dynamic disturbance.Based on the pure static tensile fracture load of red sandstone specimen,two static load levels(80%and 90%of the pure static tensile fracture load)were selected as the initial high pre-static loading state,and then the dynamic disturbance load was applied until the rock specimen was destroyed.The dynamic disturbance loading mode adopted a sinusoidal wave(sine-wave)load,and the loading wave amplitude was 20%and 10%of the pure static tensile fracture load,respectively.The dynamic disturbance frequencies were set to 1,10,20,30,40,and 50 Hz.The results show that the tensile failure strength and peak displacement of red sandstone specimens under coupled load actions are lower than those under pure static tensile load,and both parameters decrease significantly with the increase of dynamic disturbance frequency.With the increase of dynamic disturbance frequency,the decrease range of tensile strength of red sandstone increased from 3.3%to 9.4%when the pre-static load level is 80%.While when the pre-static load level is 90%,the decrease range will increase from 7.4%to 11.6%.This weakening effect of tensile strength shows that the deep surrounding rock is more likely to fail under the coupled load actions of pre-static load and dynamic disturbance.In this tensile failure mechanism of the deep surrounding rock,the stress environment of deep sidewall rock determines that the failure mode of rock is a tensile failure,the pre-static load level dominates the tensile failure strength of surrounding rock,and dynamic disturbance promotes the strength-weakening effect and affects the weakening range.展开更多
Head actuator arm assembly (HAA) is the most important mechanical component of a mobile hard disk drive (HDD) and its shock dynamic response is a principal index of vibration resistance. In this paper,a finite element...Head actuator arm assembly (HAA) is the most important mechanical component of a mobile hard disk drive (HDD) and its shock dynamic response is a principal index of vibration resistance. In this paper,a finite element (FE) model is firstly developed in ANSYS of 2.5 inch (1 inch=25.4 mm) mobile hard disk. This model includes actuator arm,voice coil motor (VCM) and pivot bearing. The various step modal of HAA is calculated by FE model. Then the actuator arm vibration behavior is simulated with LS-DYNA procedure. The influence of pulse waveform,pulse amplitude and pulse width on the shock response of the relative displacement of the head actuator arm assembly is studied.展开更多
When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The stru...When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.展开更多
To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature condit...To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.展开更多
Loading history and age are factors for disc degeneration and disc biomechanics; however, their relationship is unclear. To evaluate disc biomechanics, we conducted an experimental, anatomical and numerical approach t...Loading history and age are factors for disc degeneration and disc biomechanics; however, their relationship is unclear. To evaluate disc biomechanics, we conducted an experimental, anatomical and numerical approach to distinguish discs with mild and severe degeneration. In the experimental procedure, 10 cadaveric lumbar discs are tested to static and dynamic compression, and the elastic and viscous moduli and the dynamic parameters are reported. The morphology of disc degeneration is gained with MRI (magnetic resonance imaging) and used to generate a nonlinear finite element model of a degenerated disc, and assisted with the experimental results in order to numerically investigate the distribution of stresses and strains within the disc. The results show a promising methodology for the study of intervertebral disc biomechanics and in general other tissues, organs and medical devices.展开更多
利用摆锤冲击加载SHPB试验装置,进行砂岩和人造岩心长杆冲击试验和动态巴西盘试验,测试砂岩和人造岩心的黏性系数,分析砂岩和人造岩心强度的加载率效应。利用试验和数值模拟相结合的方法得到绿砂岩、人造岩心A和B的黏性系数分别为100,10...利用摆锤冲击加载SHPB试验装置,进行砂岩和人造岩心长杆冲击试验和动态巴西盘试验,测试砂岩和人造岩心的黏性系数,分析砂岩和人造岩心强度的加载率效应。利用试验和数值模拟相结合的方法得到绿砂岩、人造岩心A和B的黏性系数分别为100,10和5 k Pa·s。开展不同黏性岩石的动态巴西盘试验,测得砂岩和人造岩心试样的动态抗拉强度随着加载率的增大而增大,表现出一定的加载率相关性;证明了黏性对岩石强度加载率效应的影响,但两者并非正相关;在较小的加载速率下,岩石黏性导致试样中传播的应力波能量衰减,在巴西盘中心点起裂的裂纹沿加载直径方向扩展但是不足以使试样破坏成两半,从而验证了巴西盘裂纹起裂位置。展开更多
A maneuver control approach using a scissored pair of control moment gyros is proposed to improve the penetration ability of a hypersonic gliding vehicle(HGV) with a relatively high lift-drag ratio. Then, a multivaria...A maneuver control approach using a scissored pair of control moment gyros is proposed to improve the penetration ability of a hypersonic gliding vehicle(HGV) with a relatively high lift-drag ratio. Then, a multivariable strong coupling nonlinear bank-toturn dynamical model is established for the case of lateral maneuvering of an HGV equipped with a scissored pair of control moment gyros. According to the requirement of coordinated turning of the HGV in a lateral maneuver, a decoupling controller based on feedback linearization and a linear quadratic optimal algorithm is designed. Finally, the large airspace maneuvering trajectories of the HGV including S-shaped, cycloid and spiral maneuvering modes are designed by applying overload control technology. Simulations demonstrate that the designed maneuvering trajectory significantly increases the airspace range and flexibility of the vehicle. The coordinated turn control system achieves an accurate and rapid tracking of the maneuvering trajectories in large airspace.展开更多
The objective of this study is to experimentally examine the characteristics of transient vortices in the boundary layer on a disk undergoing both rotation and orbital motion. The velocity fluctuations on a rotating, ...The objective of this study is to experimentally examine the characteristics of transient vortices in the boundary layer on a disk undergoing both rotation and orbital motion. The velocity fluctuations on a rotating, orbiting disk (disk radius equal to orbital radius) are measured by the hot-wire method, and the effects of orbital motion on the transient vortices in the boundary layer are examined. When the ratio of the orbital speed to the speed of rotation is i-0.025, the interval of transient vortices depends on only the orbital radius, regardless of the directions of rota- tion and orbital motion. The rate of low-frequency disturbances increases as the orbital speed increases, and the vortices induced by these low-frequency disturbances travel over the disk and then develop in the region of in- creased velocity. Consequently, no vortices generated on a rotating disk under orbital motion are stationary rela- tive to the disk.展开更多
This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the develo...This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.展开更多
The proliferation of mobile devices in society accessing data via the "cloud" is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that...The proliferation of mobile devices in society accessing data via the "cloud" is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2,020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in^2. This requires increased performance from the magnetic pole of the electromag- netic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm × 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. The results point the way towards a new nanoscale magnetic field source to further develop in situ transmission electron microscopy.展开更多
文摘The dynamic errors of gyros are the important error sources of a strapdown inertial navigation system. In order to identify the dynamic error model coefficients accurately, the static error model coefficients which lay a foundation for compensating while identifying the dynamic error model are identified in the gravity acceleration fields by using angular position function of the three-axis turntable. The angular acceleration and angular velocity are excited on the input, output and spin axis of the gyros when the outer axis and the middle axis of a three-axis turntable are in the uniform angular velocity state simultaneously, while the inner axis of the turntable is in different static angular positions. 8 groups of data are sampled when the inner axis is in 8 different angular positions. These data are the function of the middle axis positions and the inner axis positions. For these data, harmonic analysis method is applied two times versus the middle axis positions and inner axis positions respectively so that the dynamic error model coefficients are finally identified through the least square method. In the meantime the optimal angular velocity of the outer axis and the middle axis are selected by computing the determination value of the information matrix.
基金Projects(42077244,41877272,41472269)supported by the National Natural Science Foundation of ChinaProject(2242020R10023)supported by the Fundamental Research Funds for the Central Universities of Southeast University,China。
文摘Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the mechanism of rock tensile failure caused by this coupled stress mode,the Brazilian disc tests were carried on red sandstone under high pre-static load induced by dynamic disturbance.Based on the pure static tensile fracture load of red sandstone specimen,two static load levels(80%and 90%of the pure static tensile fracture load)were selected as the initial high pre-static loading state,and then the dynamic disturbance load was applied until the rock specimen was destroyed.The dynamic disturbance loading mode adopted a sinusoidal wave(sine-wave)load,and the loading wave amplitude was 20%and 10%of the pure static tensile fracture load,respectively.The dynamic disturbance frequencies were set to 1,10,20,30,40,and 50 Hz.The results show that the tensile failure strength and peak displacement of red sandstone specimens under coupled load actions are lower than those under pure static tensile load,and both parameters decrease significantly with the increase of dynamic disturbance frequency.With the increase of dynamic disturbance frequency,the decrease range of tensile strength of red sandstone increased from 3.3%to 9.4%when the pre-static load level is 80%.While when the pre-static load level is 90%,the decrease range will increase from 7.4%to 11.6%.This weakening effect of tensile strength shows that the deep surrounding rock is more likely to fail under the coupled load actions of pre-static load and dynamic disturbance.In this tensile failure mechanism of the deep surrounding rock,the stress environment of deep sidewall rock determines that the failure mode of rock is a tensile failure,the pre-static load level dominates the tensile failure strength of surrounding rock,and dynamic disturbance promotes the strength-weakening effect and affects the weakening range.
基金Natural Science Foundation of China (Grant No. 50575072)Scientific Research Fund of Hunan Provincial Education Department (Grant No.07C280)
文摘Head actuator arm assembly (HAA) is the most important mechanical component of a mobile hard disk drive (HDD) and its shock dynamic response is a principal index of vibration resistance. In this paper,a finite element (FE) model is firstly developed in ANSYS of 2.5 inch (1 inch=25.4 mm) mobile hard disk. This model includes actuator arm,voice coil motor (VCM) and pivot bearing. The various step modal of HAA is calculated by FE model. Then the actuator arm vibration behavior is simulated with LS-DYNA procedure. The influence of pulse waveform,pulse amplitude and pulse width on the shock response of the relative displacement of the head actuator arm assembly is studied.
基金Project(51375001) supported by the National Natural Science Foundation of ChinaProject(2013CB035400) supported by the National Basic Research Program of China
文摘When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.
基金support from the National Natural Science Foundation of China(No.41972283)。
文摘To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.
文摘Loading history and age are factors for disc degeneration and disc biomechanics; however, their relationship is unclear. To evaluate disc biomechanics, we conducted an experimental, anatomical and numerical approach to distinguish discs with mild and severe degeneration. In the experimental procedure, 10 cadaveric lumbar discs are tested to static and dynamic compression, and the elastic and viscous moduli and the dynamic parameters are reported. The morphology of disc degeneration is gained with MRI (magnetic resonance imaging) and used to generate a nonlinear finite element model of a degenerated disc, and assisted with the experimental results in order to numerically investigate the distribution of stresses and strains within the disc. The results show a promising methodology for the study of intervertebral disc biomechanics and in general other tissues, organs and medical devices.
文摘利用摆锤冲击加载SHPB试验装置,进行砂岩和人造岩心长杆冲击试验和动态巴西盘试验,测试砂岩和人造岩心的黏性系数,分析砂岩和人造岩心强度的加载率效应。利用试验和数值模拟相结合的方法得到绿砂岩、人造岩心A和B的黏性系数分别为100,10和5 k Pa·s。开展不同黏性岩石的动态巴西盘试验,测得砂岩和人造岩心试样的动态抗拉强度随着加载率的增大而增大,表现出一定的加载率相关性;证明了黏性对岩石强度加载率效应的影响,但两者并非正相关;在较小的加载速率下,岩石黏性导致试样中传播的应力波能量衰减,在巴西盘中心点起裂的裂纹沿加载直径方向扩展但是不足以使试样破坏成两半,从而验证了巴西盘裂纹起裂位置。
基金supported by the Key Laboratory Opening Funding(Grant No.HIT.KLOF.2016.071)
文摘A maneuver control approach using a scissored pair of control moment gyros is proposed to improve the penetration ability of a hypersonic gliding vehicle(HGV) with a relatively high lift-drag ratio. Then, a multivariable strong coupling nonlinear bank-toturn dynamical model is established for the case of lateral maneuvering of an HGV equipped with a scissored pair of control moment gyros. According to the requirement of coordinated turning of the HGV in a lateral maneuver, a decoupling controller based on feedback linearization and a linear quadratic optimal algorithm is designed. Finally, the large airspace maneuvering trajectories of the HGV including S-shaped, cycloid and spiral maneuvering modes are designed by applying overload control technology. Simulations demonstrate that the designed maneuvering trajectory significantly increases the airspace range and flexibility of the vehicle. The coordinated turn control system achieves an accurate and rapid tracking of the maneuvering trajectories in large airspace.
基金supported by the Harada Memorial Foundation and a Grant-in-Aid for Scientific Research (No. 24560202) from the Japan Society for the Promotion of Science
文摘The objective of this study is to experimentally examine the characteristics of transient vortices in the boundary layer on a disk undergoing both rotation and orbital motion. The velocity fluctuations on a rotating, orbiting disk (disk radius equal to orbital radius) are measured by the hot-wire method, and the effects of orbital motion on the transient vortices in the boundary layer are examined. When the ratio of the orbital speed to the speed of rotation is i-0.025, the interval of transient vortices depends on only the orbital radius, regardless of the directions of rota- tion and orbital motion. The rate of low-frequency disturbances increases as the orbital speed increases, and the vortices induced by these low-frequency disturbances travel over the disk and then develop in the region of in- creased velocity. Consequently, no vortices generated on a rotating disk under orbital motion are stationary rela- tive to the disk.
基金supported by the National Natural Science Foundation of China(6127309161403227+3 种基金61403228)the Ph.D.Programs Foundation of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities(KYLX15 0116)the Project of Taishan Scholar of Shandong Province of China
文摘This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.
文摘The proliferation of mobile devices in society accessing data via the "cloud" is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2,020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in^2. This requires increased performance from the magnetic pole of the electromag- netic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm × 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. The results point the way towards a new nanoscale magnetic field source to further develop in situ transmission electron microscopy.