Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical bus...Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support.展开更多
The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the ...The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the difference between the decision trees in the model is ignored and the prediction accuracy of the model is reduced. Taking into consideration these defects, an improved random forest model based on confusion matrix (CM-RF)is proposed. The decision tree cluster is selectively constructed by the similarity measure in the process of constructing the model, and the result is output by using the dynamic weighted voting fusion method in the final voting session. Experiments show that the proposed CM-RF can reduce the impact of low-performance decision trees on the output result, thus improving the accuracy and generalization ability of random forest model.展开更多
基金the National Natural Science Foundation of China(Nos.71731001,61573181,71971114)the Fundamental Research Funds for the Central Universities(No.NS2020045)。
文摘Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support.
基金Science Research Project of Gansu Provincial Transportation Department(No.2017-012)
文摘The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the difference between the decision trees in the model is ignored and the prediction accuracy of the model is reduced. Taking into consideration these defects, an improved random forest model based on confusion matrix (CM-RF)is proposed. The decision tree cluster is selectively constructed by the similarity measure in the process of constructing the model, and the result is output by using the dynamic weighted voting fusion method in the final voting session. Experiments show that the proposed CM-RF can reduce the impact of low-performance decision trees on the output result, thus improving the accuracy and generalization ability of random forest model.