针对污水处理过程中以能耗和罚款为对象的多目标优化控制问题,对基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)进行改进,提出基于动态种群的多邻域MOEA/D用于污水处理过程中多目标...针对污水处理过程中以能耗和罚款为对象的多目标优化控制问题,对基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)进行改进,提出基于动态种群的多邻域MOEA/D用于污水处理过程中多目标优化控制。首先,将种群分为3个初始子种群,不同子种群由不同变异策略产生新解,并通过子代进化率对子种群规模进行动态调整,以适应不同进化时期对策略的需求;其次,分析种群在迭代过程中的进化状态,并结合各策略搜索的范围为每种变异策略分配一个邻域,以提升各策略的搜索性能。实验结果表明,该算法的收敛性和多样性相较于传统算法有明显的提升,该算法能够达到对污水处理过程中的目标进行优化的目的。展开更多
文摘针对污水处理过程中以能耗和罚款为对象的多目标优化控制问题,对基于分解的多目标进化算法(multi-objective evolutionary algorithm based on decomposition,MOEA/D)进行改进,提出基于动态种群的多邻域MOEA/D用于污水处理过程中多目标优化控制。首先,将种群分为3个初始子种群,不同子种群由不同变异策略产生新解,并通过子代进化率对子种群规模进行动态调整,以适应不同进化时期对策略的需求;其次,分析种群在迭代过程中的进化状态,并结合各策略搜索的范围为每种变异策略分配一个邻域,以提升各策略的搜索性能。实验结果表明,该算法的收敛性和多样性相较于传统算法有明显的提升,该算法能够达到对污水处理过程中的目标进行优化的目的。