为了解决传统火焰烟雾检测算法在森林树木遮挡与雨雾天气因素影响下存在漏检误检、准确性下降、小目标检测效果不佳的缺陷,提出了基于交叉可变特征融合和动态稀疏注意力YOLOv8的遥感森林野火检测模型。首先,针对火焰烟雾目标特征复杂的...为了解决传统火焰烟雾检测算法在森林树木遮挡与雨雾天气因素影响下存在漏检误检、准确性下降、小目标检测效果不佳的缺陷,提出了基于交叉可变特征融合和动态稀疏注意力YOLOv8的遥感森林野火检测模型。首先,针对火焰烟雾目标特征复杂的问题,在C2f模块中融合可变形卷积网络(DCNv3)实现特征融合,提升对网络图像中不同尺度火焰烟雾空间位置变化的细节感知能力,增强了网络在不同尺度下的特征表示能力。然后,在主干检测网络加入BiFormer注意力模块,达到抑制干扰信息,提升模型表征能力的效果。最后,引入小目标检测层,进一步提高了检测精度。改进后的算法相比于传统算法,mAP50值提高了1.3%,P值提高了1.5%,R值提高了0.4%。In order to solve the shortcomings of the traditional flame and smoke detection algorithm under the influence of forest tree occlusion and rain and fog weather factors, such as missing detection, false detection, reduced accuracy and poor detection effect of small targets, a remote sensing wildfire detection model based on cross-variable feature fusion and dynamic sparse attention YOLOv8 is proposed. Firstly, in order to solve the problem of complex features of flame smoke targets, the C2f module is fused with a Deformable Convolution Network v3 (DCNv3) to achieve feature fusion, which improves the detail perception ability of the spatial position changes of flame smoke at different scales in the network image, and enhances the feature representation ability of the network at different scales. Then, the attention module of BiFormer was added to the backbone detection network to suppress the interference information and improve the model representation ability. Finally, small object detection layer is introduced to further improve the detection accuracy. Compared with the traditional algorithm, the mAP50 value is increased by 1.3%, the P value is increased by 1.5%, and the R value is increased by 0.4%.展开更多
稀疏和随机动态变化是实际无线传感器网络(wireless sensor network,WSN)中普遍共同存在的两种通信拓扑不稳定因素,使基于一致性算法的分布式无迹信息滤波(distributed unscented information filter,DUIF)算法适用于稀疏动态WSN,将极...稀疏和随机动态变化是实际无线传感器网络(wireless sensor network,WSN)中普遍共同存在的两种通信拓扑不稳定因素,使基于一致性算法的分布式无迹信息滤波(distributed unscented information filter,DUIF)算法适用于稀疏动态WSN,将极大提高其实用性.为此,本文提出一种并行融合DUIF(parallel fusion DUIF,PF–DUIF)算法.在PF–DUIF算法中,通过将实时局部后验估计均值和协方差用于局部无迹信息滤波器(local unscented information filter,LUIF)的Sigma点采样,使LUIF和加权平均一致性滤波器(weighted average consensus filter,WACF)得以并行运行,从而有效抵制由通信拓扑随机动态变化带来的较大一致跟踪误差的困扰;同时,WACF通过对LUIF输出的无偏局部信息矩阵和向量分别进行平均一致性滤波,最终得到不包含由稀疏通信拓扑引起的平均一致误差的分布式后验估计结果;进而,建立即时更新机制有效抑制随机动态通信拓扑引起的PF–DUIF算法滤波异步问题,同时,基于稀疏动态WSN的平均网络模型,在通信能量消耗受限条件下优化WACF均方收敛速率,从而提高PF–DUIF算法的整体滤波效率.仿真实验结果表明,PF–DUIF算法能够有效应用于稀疏动态WSN机动目标跟踪.展开更多
文章将动态主元分析(Dynamic Principal Component Analysis,DPCA)和稀疏主元分析(Sparse Principal Component Analysis,SPCA)两种方法结合起来,提出一种新的稀疏动态主元分析方法,并将其用于工业过程的故障检测;所提出的稀疏动态主元...文章将动态主元分析(Dynamic Principal Component Analysis,DPCA)和稀疏主元分析(Sparse Principal Component Analysis,SPCA)两种方法结合起来,提出一种新的稀疏动态主元分析方法,并将其用于工业过程的故障检测;所提出的稀疏动态主元分析方法通过对过程数据的动态增广矩阵进行稀疏主元的求解,获取稀疏的负荷向量,该方法既考虑到了过程数据的动态特性,又降低了过程数据的冗余度,同时降低了计算负荷,非常适合工业过程的实时故障检测;此外,还提出了一种前向选择算法,用于确定稀疏主元中的非零负荷数目;最后,将所提出方法应用于数值例子和田纳西-伊斯曼过程,并将与主元分析、动态主元分析和稀疏主元分析等3种方法相比较,表明所提方法可以获得更好的故障检测效果。展开更多
针对卷积神经网络模型巨大的参数量和计算量导致其实际应用时难度较大的问题,提出了一种基于注意力机制与动态稀疏约束的模型压缩方法。该算法首先借助SENet(Squeeze and excitation networks,SENet)模块(可称为SE模块)评估出网络中各...针对卷积神经网络模型巨大的参数量和计算量导致其实际应用时难度较大的问题,提出了一种基于注意力机制与动态稀疏约束的模型压缩方法。该算法首先借助SENet(Squeeze and excitation networks,SENet)模块(可称为SE模块)评估出网络中各个通道的重要性,并施加稀疏正则化;然后提出一种网络稀疏度的自适应惩罚权重设计方法,根据模型学习效果,动态调整权重,将其添加到最终的训练目标上,实现模型动态压缩。最后,通过实验验证所提出的模型压缩方法,在经典的多分类数据集CIFAR 10上进行实验,证明了本文所提出的基于注意力机制与动态稀疏约束的模型压缩方法可降低网络的冗余度,使网络模型参数量减少43.97%,计算量减少82.94%,而分类准确率只比原始VGG16模型下降0.04个百分点。随后又将提出的模型压缩方法应用到杂草检测任务中,在甜菜与杂草数据集上进行实验,实验结果表明,剪枝模型相较于未剪枝模型的模型参数量减少41.26%,计算量减少45.77%,而平均检测精度均值只减少0.91个百分点,证明了该方法在杂草检测方面效果较好。展开更多
文摘为了解决传统火焰烟雾检测算法在森林树木遮挡与雨雾天气因素影响下存在漏检误检、准确性下降、小目标检测效果不佳的缺陷,提出了基于交叉可变特征融合和动态稀疏注意力YOLOv8的遥感森林野火检测模型。首先,针对火焰烟雾目标特征复杂的问题,在C2f模块中融合可变形卷积网络(DCNv3)实现特征融合,提升对网络图像中不同尺度火焰烟雾空间位置变化的细节感知能力,增强了网络在不同尺度下的特征表示能力。然后,在主干检测网络加入BiFormer注意力模块,达到抑制干扰信息,提升模型表征能力的效果。最后,引入小目标检测层,进一步提高了检测精度。改进后的算法相比于传统算法,mAP50值提高了1.3%,P值提高了1.5%,R值提高了0.4%。In order to solve the shortcomings of the traditional flame and smoke detection algorithm under the influence of forest tree occlusion and rain and fog weather factors, such as missing detection, false detection, reduced accuracy and poor detection effect of small targets, a remote sensing wildfire detection model based on cross-variable feature fusion and dynamic sparse attention YOLOv8 is proposed. Firstly, in order to solve the problem of complex features of flame smoke targets, the C2f module is fused with a Deformable Convolution Network v3 (DCNv3) to achieve feature fusion, which improves the detail perception ability of the spatial position changes of flame smoke at different scales in the network image, and enhances the feature representation ability of the network at different scales. Then, the attention module of BiFormer was added to the backbone detection network to suppress the interference information and improve the model representation ability. Finally, small object detection layer is introduced to further improve the detection accuracy. Compared with the traditional algorithm, the mAP50 value is increased by 1.3%, the P value is increased by 1.5%, and the R value is increased by 0.4%.
文摘稀疏和随机动态变化是实际无线传感器网络(wireless sensor network,WSN)中普遍共同存在的两种通信拓扑不稳定因素,使基于一致性算法的分布式无迹信息滤波(distributed unscented information filter,DUIF)算法适用于稀疏动态WSN,将极大提高其实用性.为此,本文提出一种并行融合DUIF(parallel fusion DUIF,PF–DUIF)算法.在PF–DUIF算法中,通过将实时局部后验估计均值和协方差用于局部无迹信息滤波器(local unscented information filter,LUIF)的Sigma点采样,使LUIF和加权平均一致性滤波器(weighted average consensus filter,WACF)得以并行运行,从而有效抵制由通信拓扑随机动态变化带来的较大一致跟踪误差的困扰;同时,WACF通过对LUIF输出的无偏局部信息矩阵和向量分别进行平均一致性滤波,最终得到不包含由稀疏通信拓扑引起的平均一致误差的分布式后验估计结果;进而,建立即时更新机制有效抑制随机动态通信拓扑引起的PF–DUIF算法滤波异步问题,同时,基于稀疏动态WSN的平均网络模型,在通信能量消耗受限条件下优化WACF均方收敛速率,从而提高PF–DUIF算法的整体滤波效率.仿真实验结果表明,PF–DUIF算法能够有效应用于稀疏动态WSN机动目标跟踪.
文摘文章将动态主元分析(Dynamic Principal Component Analysis,DPCA)和稀疏主元分析(Sparse Principal Component Analysis,SPCA)两种方法结合起来,提出一种新的稀疏动态主元分析方法,并将其用于工业过程的故障检测;所提出的稀疏动态主元分析方法通过对过程数据的动态增广矩阵进行稀疏主元的求解,获取稀疏的负荷向量,该方法既考虑到了过程数据的动态特性,又降低了过程数据的冗余度,同时降低了计算负荷,非常适合工业过程的实时故障检测;此外,还提出了一种前向选择算法,用于确定稀疏主元中的非零负荷数目;最后,将所提出方法应用于数值例子和田纳西-伊斯曼过程,并将与主元分析、动态主元分析和稀疏主元分析等3种方法相比较,表明所提方法可以获得更好的故障检测效果。
文摘针对卷积神经网络模型巨大的参数量和计算量导致其实际应用时难度较大的问题,提出了一种基于注意力机制与动态稀疏约束的模型压缩方法。该算法首先借助SENet(Squeeze and excitation networks,SENet)模块(可称为SE模块)评估出网络中各个通道的重要性,并施加稀疏正则化;然后提出一种网络稀疏度的自适应惩罚权重设计方法,根据模型学习效果,动态调整权重,将其添加到最终的训练目标上,实现模型动态压缩。最后,通过实验验证所提出的模型压缩方法,在经典的多分类数据集CIFAR 10上进行实验,证明了本文所提出的基于注意力机制与动态稀疏约束的模型压缩方法可降低网络的冗余度,使网络模型参数量减少43.97%,计算量减少82.94%,而分类准确率只比原始VGG16模型下降0.04个百分点。随后又将提出的模型压缩方法应用到杂草检测任务中,在甜菜与杂草数据集上进行实验,实验结果表明,剪枝模型相较于未剪枝模型的模型参数量减少41.26%,计算量减少45.77%,而平均检测精度均值只减少0.91个百分点,证明了该方法在杂草检测方面效果较好。