期刊文献+
共找到697篇文章
< 1 2 35 >
每页显示 20 50 100
面向动态公交的离散分层记忆粒子群优化算法
1
作者 黄君泽 吴文渊 +2 位作者 李轶 石明全 王正江 《计算机工程》 CAS CSCD 北大核心 2024年第4期20-30,共11页
随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足... 随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足。基于这一研究现状,提出动态公交问题模型和面向动态公交的离散分层记忆粒子群优化(PSO)算法。首先给出动态公交问题的目标函数和约束条件,给出动态公交问题的解的形式,并定义解的编辑距离;其次提出使用数据驱动的预计算路径集生成PSO算法的优质初始解的方法,给出基于解的编辑距离的PSO算法中粒子的变异概率和自适应收敛系数的计算方式;最后提出将粒子群分层求解的方法,其中低层粒子群可复用、可继承,从而减少单时间片内、时间片间复制和重初始化带来的性能损耗。基于重庆市北碚区蔡家岗街道的真实场景和亿级历史数据建立仿真环境进行实验,实验结果表明:相对于不分层PSO算法,分层PSO算法通过复用和继承能缩短超80%计算用时;自适应参数和变异机制能帮助算法更稳定地收敛到更优解;相对于传统公交系统,动态公交能在同等运力限制下,提高22%的乘客接单率,节省39.1%的乘客出行时间,所提算法能满足公交运营商在片区内进行动态公交调度的需求;相对于对比算法,所提算法平均缩短了85.3%的计算用时,并且在仅耗用80%里程的情况下提高了至少12%的接单率。 展开更多
关键词 智慧交通 动态公交问题 电召问题 粒子优化算法 预计算路径集 自适应变异
下载PDF
基于遗传粒子群动态聚类算法的物流柔性分拣系统品规分配
2
作者 杜佳奇 杨旭东 +2 位作者 孙栋 张磊 王晋冰 《包装工程》 CAS 北大核心 2024年第5期126-134,共9页
目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态... 目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态聚类(GAPSO-K)算法进行求解。首先,结合各品规分拣量对品规相似系数进行改进,并将其作为适应度函数;然后在粒子群算法中对惯性权重因子进行改进,使其值可以进行自适应改变;最后,在粒子群动态聚类算法中引入遗传算法中的交叉变异扩大解的搜索范围,基于Matlab对文中的其他算法进行求解对比,求得结果在EM-plant中进行仿真验证。结果结合某烟草物流配送中心数据仿真验证,利用GAPSO-K算法处理订单的时间为234.5 s,较传统时间大幅度较少,有效提升了柔性物流分拣效率。结论采用该算法可充分发挥2种算法的优良性,具有更好的收敛性及寻优性,为柔性物流品规分配提供了新思路。 展开更多
关键词 品规分配 品规相似系数 惯性权重因子 遗传粒子动态聚类算法
下载PDF
改进动态多种群粒子群算法无人机路径规划研究
3
作者 王旭 张承志 +2 位作者 张峻一 李帅 黄恒一 《计算机科学与应用》 2024年第9期79-89,共11页
论文研究核心目标是评估改进动态多种群粒子群算法(DMPG)在无人机路径规划中的应用效果,特别是在动态环境下的性能表现。该算法通过引入动态权重调整机制和多种群策略,旨在增强算法在动态环境下的适应性和优化性能。此外,本文还结合了... 论文研究核心目标是评估改进动态多种群粒子群算法(DMPG)在无人机路径规划中的应用效果,特别是在动态环境下的性能表现。该算法通过引入动态权重调整机制和多种群策略,旨在增强算法在动态环境下的适应性和优化性能。此外,本文还结合了深度强化学习(DRL)技术,以提高无人机在复杂环境中的自主决策能力。通过构建详细的仿真环境,我们对DMPG算法进行了全面的性能评估,包括其避障能力、路径规划的效率以及对动态变化的响应速度。仿真结果显示,DMPG算法在动态环境中表现出色,不仅能够有效规避障碍物,而且在路径规划的全局性和鲁棒性方面均取得了显著提升。与现有的静态和动态路径规划算法进行比较,DMPG算法在平均路径长度、避障成功率以及任务完成时间等关键性能指标上均展现出了卓越的性能。这些发现为无人机路径规划的研究提供了新的见解,并为未来相关领域的研究和应用提供了有价值的参考。The core objective of this paper is to evaluate the application effect of improved Dynamic Multi Swarm Particle Swarm Optimization (DMPG) algorithm in UAV path planning, especially its performance in dynamic environments. This algorithm aims to enhance its adaptability and optimization performance in dynamic environments by introducing dynamic weight adjustment mechanisms and various swarm strategies. In addition, this article also combines deep reinforcement learning (DRL) technology to improve the autonomous decision-making ability of drones in complex environments. By constructing a detailed simulation environment, we conducted a comprehensive performance evaluation of the DMPG algorithm, including its obstacle avoidance ability, path planning efficiency, and response speed to dynamic changes. The simulation results show that the DMPG algorithm performs well in dynamic environments, not only effectively avoiding obstacles, but also achieving significant improvements in the global and robust aspects of path planning. Compared with existing static and dynamic path planning algorithms, the DMPG algorithm has demonstrated excellent performance in key performance indicators such as average path length, obstacle avoidance success rate, and task completion time. These findings provide new insights for the study of drone path planning and valuable references for future research and applications in related fields. 展开更多
关键词 粒子算法 自主决策 多种策略 动态权重
下载PDF
种群熵启动反向学习的动态多种群粒子群算法 被引量:1
4
作者 梁晓磊 张孟镝 +1 位作者 周文峰 武建国 《智能计算机与应用》 2024年第2期9-17,共9页
针对传统粒子群优化算法在求解复杂优化问题时容易陷入局部最优和停滞的问题,提出采用种群熵启动反向学习的动态多种群粒子群算法。借鉴狮群算法划分狮群的思想,采用动态多种群划分策略,将粒子划分成3个不同行为子群,对其实施不同的位... 针对传统粒子群优化算法在求解复杂优化问题时容易陷入局部最优和停滞的问题,提出采用种群熵启动反向学习的动态多种群粒子群算法。借鉴狮群算法划分狮群的思想,采用动态多种群划分策略,将粒子划分成3个不同行为子群,对其实施不同的位置更新公式,保持粒子在搜索过程中的多样性;在迭代阶段,为避免算法早熟,构建了各维重心反向变异策略丰富变异备选个体,并结合种群熵指标进行种群状态评价适时启动变异策略,帮助粒子跳出局部最优。最后,通过8个基准测试函数与同种类6种经典和新型改进算法,在不同维度下进行测试对比。数值实验结果表明,改进策略显著提升了粒子群算法搜索能力,在搜索精度和搜索速度方面均优于其他对比算法。 展开更多
关键词 粒子算法 算法 反向学习 动态多种划分
下载PDF
基于动态粒子群算法的ARAIM可用性优化方法
5
作者 王尔申 孙薪蕙 +3 位作者 曲萍萍 曾洪正 徐嵩 庞涛 《测绘学报》 EI CSCD 北大核心 2024年第1期137-145,共9页
卫星导航的完好性监测技术对保障航空领域的导航安全至关重要。针对高级接收机自主完好性监测算法将完好性风险概率和连续性风险概率平均分配给所有可见卫星,导致垂直保护级较为保守,进而造成可用性降低的问题,本文提出了一种基于动态... 卫星导航的完好性监测技术对保障航空领域的导航安全至关重要。针对高级接收机自主完好性监测算法将完好性风险概率和连续性风险概率平均分配给所有可见卫星,导致垂直保护级较为保守,进而造成可用性降低的问题,本文提出了一种基于动态粒子群算法(dynamic particle swarm optimization,DPSO)的ARAIM可用性优化方法。通过优化风险概率分配过程,在完好性指标不变的情况下,可有效降低垂直保护级,提高了ARAIM算法的可用性。选取全球均匀分布的6个MGEX(multi-GNSS experiment)测站对所提方法进行验证,并分析了算法的全球可用性。同时,为验证该方法的有效性,在沈阳法库通航机场采集飞机全飞行阶段的卫星导航试验数据,对算法进行验证。静态数据与动态数据试验结果表明:采用基于DPSO算法的分配策略,降低了垂直保护级,提高了ARAIM可用性,全球范围内ARAIM可用性大于99.5%的覆盖比率由98.2%增加到99.7%。 展开更多
关键词 GNSS ARAIM 可用性 风险概率分配 垂直保护级 动态粒子算法
下载PDF
基于动态粒子群算法的战时多目标物资供应任务规划模型求解
6
作者 高雄飞 《计算机应用文摘》 2024年第15期183-185,189,共4页
文章针对多目标物资供应任务规划模型提出了一种动态粒子群算法。该算法引入了探测机制和响应机制以适应动态环境,有效克服了战时物资供应不准确的问题。数值实验结果表明,动态粒子群算法能够有效应用于该模型的求解,并在性能和精度上... 文章针对多目标物资供应任务规划模型提出了一种动态粒子群算法。该算法引入了探测机制和响应机制以适应动态环境,有效克服了战时物资供应不准确的问题。数值实验结果表明,动态粒子群算法能够有效应用于该模型的求解,并在性能和精度上相较于其他算法有所提升。因此,动态粒子群算法可作为战时多目标物资供应任务规划模型求解的新方法。 展开更多
关键词 物资供应 任务规划 动态粒子算法
下载PDF
基于自适应动态粒子群优化的RAK-SVD方法
7
作者 乐友喜 姚晓辰 +1 位作者 付俊楠 葛传友 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期494-503,共10页
K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪... K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪方法。首先通过修改字典原子和相关参数,解决了由于常规粒子群算法的惯性参数固定不变,导致后期搜索效率下降的问题;其次将正则化系数引入近似K-SVD(AK-SVD)方法,明显提升了去噪效果;最后利用自适应动态粒子群算法自动优选AK-SVD方法中的正则化参数,提高了稀疏分解的确定性,在对强反射信号进行去噪的同时加强了对弱信号的保护。模型测试和实际应用均表明,该方法有利于弱信号的提取和识别,不仅能够显著改善弱地震信号的去噪效果,还提升了计算效率。该方法具有一定的实际应用价值。 展开更多
关键词 自适应动态粒子算法 K-SVD字典 正则化 去噪
下载PDF
一种惯性权重动态调整的新型粒子群算法 被引量:49
8
作者 刘建华 樊晓平 瞿志华 《计算机工程与应用》 CSCD 北大核心 2007年第7期68-70,共3页
在简要介绍基本PSO算法的基础上,提出了一种根据不同粒子距离全局最优点的距离对基本PSO算法的惯性权重进行动态调整的新型粒子群算法(DPSO),并对新算法进行了描述。以典型优化问题的实例仿真验证了DPSO算法的有效性。
关键词 粒子算法(PSO算法) 全局最优性 动态粒子算法(dpso) 收敛性
下载PDF
一种动态改变惯性权重的粒子群优化算法 被引量:80
9
作者 王启付 王战江 王书亭 《中国机械工程》 EI CAS CSCD 北大核心 2005年第11期945-948,共4页
针对粒子群优化算法的局限性,提出了一种动态改变惯性权重的粒子群算法,在优化迭代过程中,惯性权重值随粒子的位置和目标函数的性质而变化。函数测试表明,改进后的算法使收敛速度显著加快,而且不易陷入局部极值点。
关键词 粒子 优化算法 动态惯性权重 收敛速度
下载PDF
自适应免疫粒子群算法在动态无功优化中应用 被引量:26
10
作者 沈茂亚 丁晓群 +2 位作者 王宽 侯学勇 徐进东 《电力自动化设备》 EI CSCD 北大核心 2007年第1期31-35,共5页
根据电力系统实际运行中负荷不断变化的情况,提出了动态无功优化问题的完整数学描述和计算方法。从负荷曲线的特点出发,结合设备动作次数约束,提出利用遗传算法进行智能化负荷分段的方法。利用引入免疫系统的免疫信息处理机制和自动调... 根据电力系统实际运行中负荷不断变化的情况,提出了动态无功优化问题的完整数学描述和计算方法。从负荷曲线的特点出发,结合设备动作次数约束,提出利用遗传算法进行智能化负荷分段的方法。利用引入免疫系统的免疫信息处理机制和自动调整动量系数的自适应因子的粒子群算法,从整体上获得系统的最优控制方式。IEEE 30节点系统算例分析表明,该方法有效减少了补偿设备和变压器分接头的动作次数,其中节点12电容器组的投切次数由6次降为2次,且系统在一天内的有功损耗由1.2413p.u.降为1.1554p.u.。 展开更多
关键词 电力系统 动态无功优化 负荷分段 粒子算法
下载PDF
基于改进粒子群算法的无线传感器网络覆盖优化
11
作者 任进 李一博 闵畅 《无线电工程》 2024年第12期2841-2849,共9页
为了提高无线传感器网络(Wireless Sensor Network, WSN)的覆盖率,提出了一种基于相互学习能力和动态学习因子的改进粒子群优化(Modified Partide Swarm Optimization, MPSO)算法。引入了拉丁超立方采样(Latin Hypercube Sampling, LHS... 为了提高无线传感器网络(Wireless Sensor Network, WSN)的覆盖率,提出了一种基于相互学习能力和动态学习因子的改进粒子群优化(Modified Partide Swarm Optimization, MPSO)算法。引入了拉丁超立方采样(Latin Hypercube Sampling, LHS)序列来初始化种群,增加了种群的多样性,为之后优化奠定基础;引入一种相互学习方法,粒子通过随机选择目标粒子来增强自身的学习能力,提升局部寻优性能;利用一种动态学习因子策略,通过改变粒子的学习能力,加快了算法收敛速度并增强了全局寻优能力。仿真结果表明,在不改变原算法复杂度的情况下,相较于基本PSO算法和其他对比算法,改进PSO算法可以耗费更少的资源达到更好的寻优效果,可以有效地解决网络覆盖盲区和覆盖冗余问题,提高网络覆盖率。 展开更多
关键词 无线传感器网络 粒子优化算法 拉丁超立方采样 相互学习能力 动态学习因子
下载PDF
基于动态自适应粒子群算法的非侵入式家居负荷分解方法 被引量:52
12
作者 孙毅 张璐 +4 位作者 赵洪磊 刘耀先 李彬 李德智 崔高颖 《电网技术》 EI CSCD 北大核心 2018年第6期1819-1826,共8页
非侵入式负荷监测可以在保证用户隐私的前提下深入分析用户独立负荷的用电信息,是智能用电技术体系的关键内容。为提高负荷辨识的准确性,提出一种基于动态自适应粒子群算法(dynamic adaptive particle swarm optimization,DAPSO)的非... 非侵入式负荷监测可以在保证用户隐私的前提下深入分析用户独立负荷的用电信息,是智能用电技术体系的关键内容。为提高负荷辨识的准确性,提出一种基于动态自适应粒子群算法(dynamic adaptive particle swarm optimization,DAPSO)的非侵入式负荷分解方法。在传统功率特征的基础上,将总谐波失真系数(total harmonic distortion,kTHD)作为负荷新特征引入目标函数,采用DAPSO算法对实测用电数据进行负荷分解。仿真结果表明,在不同噪声背景下,DAPSO算法的负荷辨识率和收敛速度均得到一定提高,从而验证了DAPSO算法对家居负荷分解具有更优的可靠性和鲁棒性。 展开更多
关键词 非侵入式负荷监测 动态自适应粒子算法 特征提取 总谐波失真系数
下载PDF
动态规划和粒子群算法在水电站厂内经济运行中的应用比较研究 被引量:25
13
作者 程春田 唐子田 +1 位作者 李刚 杨斌斌 《水力发电学报》 EI CSCD 北大核心 2008年第6期27-31,共5页
随着电站装机容量和机组台数的不断增加,利用动态规划求解水电站厂内经济运行问题,将面临"维数灾"和实效性问题。近些年,粒子群算法作为一种新型的群体智能优化方法,由于能够弥补动态规划计算时间长、内存占用量大等诸多不足... 随着电站装机容量和机组台数的不断增加,利用动态规划求解水电站厂内经济运行问题,将面临"维数灾"和实效性问题。近些年,粒子群算法作为一种新型的群体智能优化方法,由于能够弥补动态规划计算时间长、内存占用量大等诸多不足,在水电站厂内经济运行等方面得到了广泛重视。现有文献,大多数从方法的应用角度探讨较多,但从替代动态规划的必然性和潜力方面探讨较少,鲜有实例分析。本文以百万级装机千瓦的乌江渡水电站为实例,深入分析与比较了粒子群算法与动态规划的优劣,认为粒子群算法是代替动态规划、求解装机规模庞大的巨型水电站厂内经济运行的有效方法。 展开更多
关键词 水电工程 动态规划 粒子算法 巨型水电站
下载PDF
改进粒子群算法的动态空间调度方法 被引量:13
14
作者 张志英 杨克开 +1 位作者 于瑾维 陈强 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第12期1344-1350,共7页
针对船体分段生产调度的多目标性和动态性,提出了一种改进粒子群算法的动态空间调度方法,确定船体分段在工作平台上的加工顺序和空间布局位置.算法以加工完成时间最短和空间利用率最高为目标,采用自适应惯性权重策略保证算法的收敛性,... 针对船体分段生产调度的多目标性和动态性,提出了一种改进粒子群算法的动态空间调度方法,确定船体分段在工作平台上的加工顺序和空间布局位置.算法以加工完成时间最短和空间利用率最高为目标,采用自适应惯性权重策略保证算法的收敛性,并引入遗传算法中的选择算子和变异算子增强算法的收敛速度和多样性,利用启发式定位策略确定分段的位置.最后,以船厂实际生产数据进行仿真验证.仿真结果表明,所提方法可以大大降低以手工方式制定调度计划的复杂度,并能有效地提高空间利用率达到70%,说明该方法是解决动态空间调度问题的一种有效方案. 展开更多
关键词 动态空间调度 粒子算法 启发式定位策略 造船
下载PDF
动态粒子群优化算法 被引量:20
15
作者 于雪晶 麻肖妃 夏斌 《计算机工程》 CAS CSCD 北大核心 2010年第4期193-194,197,共3页
针对普通粒子群优化算法难以在动态环境下有效逼近最优位置的问题,提出一种动态粒子群优化算法。设置敏感粒子和响应阈值,当敏感粒子的适应度值变化超过响应阈值时,按一定比例重新初始化种群和粒子速度。设计双峰DF1动态模型,用于验证... 针对普通粒子群优化算法难以在动态环境下有效逼近最优位置的问题,提出一种动态粒子群优化算法。设置敏感粒子和响应阈值,当敏感粒子的适应度值变化超过响应阈值时,按一定比例重新初始化种群和粒子速度。设计双峰DF1动态模型,用于验证该算法的性能,仿真实验结果表明其动态极值跟踪能力较强。 展开更多
关键词 粒子优化算法 动态 双峰DF1模型 敏感粒子
下载PDF
基于动态聚集距离的多目标粒子群优化算法及其应用 被引量:14
16
作者 刘丽琴 张学良 +3 位作者 谢黎明 李明磊 温淑花 卢青波 《农业机械学报》 EI CAS CSCD 北大核心 2010年第3期189-194,共6页
为了增加Pareto集的多样性,提高多目标优化的全局寻优能力,提出了一种基于动态聚集距离的多目标粒子群算法(DCD-MOPSO)。该算法利用改进的快速排序方法来减少计算量,采用动态变化的惯性权重和加速因子以增强算法的全局寻优能力,并基于... 为了增加Pareto集的多样性,提高多目标优化的全局寻优能力,提出了一种基于动态聚集距离的多目标粒子群算法(DCD-MOPSO)。该算法利用改进的快速排序方法来减少计算量,采用动态变化的惯性权重和加速因子以增强算法的全局寻优能力,并基于动态聚集距离对外部集进行维护以增加Pareto集的多样性。通过典型测试函数的仿真实验和应用实例对DCD-MOPSO算法性能进行了分析,并与多目标优化算法MOPSO和NSGA-Ⅱ进行了比较。结果表明,DCD-MOPSO算法收敛速度较快,且得到的Pareto集分布均匀。 展开更多
关键词 粒子算法 多目标优化 改进的快速排序法 动态聚集距离 Pareto集
下载PDF
混沌粒子群算法及其在生化过程动态优化中的应用 被引量:29
17
作者 莫愿斌 陈德钊 胡上序 《化工学报》 EI CAS CSCD 北大核心 2006年第9期2123-2127,共5页
化工过程的动态优化,大多较为复杂,有相当的难度.新近发展的粒子群优化算法,基于群智能机理,适于求解连续问题,但它不具备遍历特性,影响了全局搜索能力.本文拟引入混沌机制,以混沌变量的遍历性改进粒子群算法,使其更全面地获取目标函数... 化工过程的动态优化,大多较为复杂,有相当的难度.新近发展的粒子群优化算法,基于群智能机理,适于求解连续问题,但它不具备遍历特性,影响了全局搜索能力.本文拟引入混沌机制,以混沌变量的遍历性改进粒子群算法,使其更全面地获取目标函数的有用信息,并反映到逐代更新的个体极值和群体极值中,可更有效地带领粒子群移向最优解,提高了全局搜优效率.由此构建为混沌粒子群算法,经多个性能测试,表明其搜索能力优于经典粒子群算法,引入混沌机制是有效的.将其用于Park-Ramirez生物反应器补料流率的动态优化,也取得了满意的效果. 展开更多
关键词 粒子优化算法 混沌 遍历性 敏感 Park-Ramirez生物反应器 动态优化
下载PDF
基于动态粒子数的微粒群优化算法 被引量:12
18
作者 耶刚强 孙世宇 +2 位作者 梁彦 王睿 潘泉 《信息与控制》 CSCD 北大核心 2008年第1期18-27,共10页
提出了基于动态粒子数的微粒群算法,并建立了粒子数变化函数.该函数包含粒子数衰减趋势项和周期振荡项.衰减趋势项能够在种群向最优解不断收敛的过程中逐渐减少粒子数,以提高粒子效率.周期振荡项中的递增阶段代表了新粒子的随机出现,以... 提出了基于动态粒子数的微粒群算法,并建立了粒子数变化函数.该函数包含粒子数衰减趋势项和周期振荡项.衰减趋势项能够在种群向最优解不断收敛的过程中逐渐减少粒子数,以提高粒子效率.周期振荡项中的递增阶段代表了新粒子的随机出现,以增加粒子群的多样性,而周期振荡项中的递减阶段代表了探索性能差的粒子逐渐消亡,以提高优化效率.对4个标准函数进行测试,仿真结果表明该算法能有效地减少计算量,并显著提高全局搜索性能. 展开更多
关键词 微粒优化算法 动态粒子 体多样性
下载PDF
多目标粒子群算法用于补料分批生化反应器动态多目标优化 被引量:17
19
作者 贺益君 俞欢军 +1 位作者 成飙 陈德钊 《化工学报》 EI CAS CSCD 北大核心 2007年第5期1262-1270,共9页
多目标优化是过程系统工程的重要课题,通常以加权或约束方式将其转换为单一目标,未能反映多目标间的复杂关系,不利于随时根据需求作出有效的决策。基于群智能的粒子群算法具有全局优化性能,且易于实现。为使其适于多目标优化,应拓展功能... 多目标优化是过程系统工程的重要课题,通常以加权或约束方式将其转换为单一目标,未能反映多目标间的复杂关系,不利于随时根据需求作出有效的决策。基于群智能的粒子群算法具有全局优化性能,且易于实现。为使其适于多目标优化,应拓展功能,实施改造。以Pareto支配概念评价种群个体的优劣,设计了确定局部最优点和全局最优点的操作。又利用各粒子的局部最优点信息进行速度更新,以加强种群的多样性,避免因早熟而陷于局部最优。还设置了外部优解库,并通过分散度计算,以适当的策略进行更新,使之逐步均匀地逼近于Pareto最优解集。由此构建一种多目标粒子群优化算法(multi-objective particle swarm optimization,MOP-SO),并用于补料分批生化反应器的动态多目标优化,取得了满意的结果。可基于所搜得的Pareto最优解集,分析目标间的关系,为合理决策提供有效的支持。经与NSGA-II比较,MOPSO算法具有更为优良的性能。 展开更多
关键词 多目标 粒子算法 均匀逼近 PARETO最优集 补料分批生化反应器 动态优化
下载PDF
基于量子粒子群算法多目标优化的配电网动态重构 被引量:34
20
作者 文娟 谭阳红 雷可君 《电力系统保护与控制》 EI CSCD 北大核心 2015年第16期73-78,共6页
为保证配电网动态重构后系统安全稳定的运行,提出了以网损和节点电压稳定性为目标函数的量子粒子群算法的配电网动态重构。针对配电网动态重构过程中时段划分问题,提出以负荷曲线的单调性和幅值变化大小为依据初步划分时间段落。采用整... 为保证配电网动态重构后系统安全稳定的运行,提出了以网损和节点电压稳定性为目标函数的量子粒子群算法的配电网动态重构。针对配电网动态重构过程中时段划分问题,提出以负荷曲线的单调性和幅值变化大小为依据初步划分时间段落。采用整数型量子粒子群算法进行动态重构,重构过程中以相邻时段的网损变化值的关系获取最佳重构段落,然后综合考虑配电网网损最小和节点电压值最大且波动最小为目标寻找最佳重构结构。以IEEE33配电系统为例验证了所提方法的有效性和实用性。 展开更多
关键词 配电网 动态重构 最优重构次数 多目标 整数型量子粒子算法
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部