粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布...粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布,从而可能导致泛化能力降低.针对这一问题,通过引入动态层次粒划的方法,设计了动态粒度支持向量回归(dynamical granular support vector regression,简称DGSVR)模型.该方法首先将训练样本映射到高维空间,使得在低维样本空间无法直接得到的分布信息显示出来,并在该特征空间中进行初始粒划.然后,通过衡量样本粒与当前回归超平面的距离,找到含有较多回归信息的粒,并通过计算其半径和密度进行深层次的动态粒划.如此循环迭代,直到没有信息粒需要进行深层粒划时为止.最后,通过动态粒划过程得到的不同层次的粒进行回归训练,在有效压缩训练集的同时,尽可能地使含有重要信息的样本在最终训练集中保留下来.在基准函数数据集及UCI上的回归数据集上的实验结果表明,DGSVR方法能够以较快的速度完成动态粒划的过程并收敛,在保持较高训练效率的同时可有效提高传统粒度支持向量回归机(granular support vector regression machine,简称GSVR)的泛化性能.展开更多
粒度支持向量机(granular support vector machine,GSVM)引入粒计算的方式对原始数据集进行粒度划分以提高支持向量机(support vector machine,SVM)的学习效率。传统GSVM采用静态粒划分机制,即通过提取划分后数据簇中的代表信息进行模...粒度支持向量机(granular support vector machine,GSVM)引入粒计算的方式对原始数据集进行粒度划分以提高支持向量机(support vector machine,SVM)的学习效率。传统GSVM采用静态粒划分机制,即通过提取划分后数据簇中的代表信息进行模型训练,有效地提升了SVM的学习效率,但由于GSVM对信息无差别的粒度划分导致对距离超平面较近的强信息粒提取不足,距离超平面较远的弱信息粒被过多保留,影响了SVM的学习性能。针对这一问题,本文提出了采用划分融合双向控制的粒度支持向量机方法(division-fusion support vec-tor machine,DFSVM)。该方法通过动态数据划分融合的方式,选取超平面附近的强信息粒进行深层次的划分,同时将距离超平面较远的弱信息粒进行选择性融合,以动态地保持训练样本规模的稳定性。通过实验表明,采用划分融合的方法能够在保证模型训练精度的条件下显著提升SVM的学习效率。展开更多
文摘粒度支持向量机(granular support vector machine,简称GSVM)可以有效提高支持向量机(support vector machine,简称SVM)的学习效率,但由于经典GSVM通常将粒用个别样本替代,且粒划和学习在不同空间进行,因而不可避免地改变了原始数据分布,从而可能导致泛化能力降低.针对这一问题,通过引入动态层次粒划的方法,设计了动态粒度支持向量回归(dynamical granular support vector regression,简称DGSVR)模型.该方法首先将训练样本映射到高维空间,使得在低维样本空间无法直接得到的分布信息显示出来,并在该特征空间中进行初始粒划.然后,通过衡量样本粒与当前回归超平面的距离,找到含有较多回归信息的粒,并通过计算其半径和密度进行深层次的动态粒划.如此循环迭代,直到没有信息粒需要进行深层粒划时为止.最后,通过动态粒划过程得到的不同层次的粒进行回归训练,在有效压缩训练集的同时,尽可能地使含有重要信息的样本在最终训练集中保留下来.在基准函数数据集及UCI上的回归数据集上的实验结果表明,DGSVR方法能够以较快的速度完成动态粒划的过程并收敛,在保持较高训练效率的同时可有效提高传统粒度支持向量回归机(granular support vector regression machine,简称GSVR)的泛化性能.
文摘粒度支持向量机(granular support vector machine,GSVM)引入粒计算的方式对原始数据集进行粒度划分以提高支持向量机(support vector machine,SVM)的学习效率。传统GSVM采用静态粒划分机制,即通过提取划分后数据簇中的代表信息进行模型训练,有效地提升了SVM的学习效率,但由于GSVM对信息无差别的粒度划分导致对距离超平面较近的强信息粒提取不足,距离超平面较远的弱信息粒被过多保留,影响了SVM的学习性能。针对这一问题,本文提出了采用划分融合双向控制的粒度支持向量机方法(division-fusion support vec-tor machine,DFSVM)。该方法通过动态数据划分融合的方式,选取超平面附近的强信息粒进行深层次的划分,同时将距离超平面较远的弱信息粒进行选择性融合,以动态地保持训练样本规模的稳定性。通过实验表明,采用划分融合的方法能够在保证模型训练精度的条件下显著提升SVM的学习效率。