In this paper, the feasibility and objectives coordination of real-time optimization (RTO) are systemically investigated under soft constraints. The reason for requiring soft constraints adjustment and objective relax...In this paper, the feasibility and objectives coordination of real-time optimization (RTO) are systemically investigated under soft constraints. The reason for requiring soft constraints adjustment and objective relaxation simultaneously is that the result is not satisfactory when the feasible region is apart from the desired working point or the optimization problem is infeasible. The mixed logic method is introduced to describe the priority of the constraints and objectives, thereby the soft constraints adjustment and objectives coordination are solved together in RTO. A case study on the Shell heavy oil fractionators benchmark problem illustrating the method is finally presented.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60474051) the Key Technology and Development Program of Shanghai Science and Technology Department (No. 04DZ11008) partly by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20020248028).
文摘In this paper, the feasibility and objectives coordination of real-time optimization (RTO) are systemically investigated under soft constraints. The reason for requiring soft constraints adjustment and objective relaxation simultaneously is that the result is not satisfactory when the feasible region is apart from the desired working point or the optimization problem is infeasible. The mixed logic method is introduced to describe the priority of the constraints and objectives, thereby the soft constraints adjustment and objectives coordination are solved together in RTO. A case study on the Shell heavy oil fractionators benchmark problem illustrating the method is finally presented.