In this study, in order to determine the very early load transfer behavior in the bolted joint connection, experimental dynamic analysis of different laminated glass beams including two surface cracks is considered. F...In this study, in order to determine the very early load transfer behavior in the bolted joint connection, experimental dynamic analysis of different laminated glass beams including two surface cracks is considered. For this purpose, both three different plastic interlayers (i.e., three types of polyvinyl butyral--PVB) and three different glass-lamina thicknesses are taken into account. Effects of the plastic interlayer, thickness of the glass-lamina, number of surface cracks and their locations on the vibration characteristics/structural performances are examined experimentally. Vibration tests are performed to present free vibration characteristics of the laminated glass beams under clamped-free boundary conditions. Experimental dynamic analysis consists of six parts: (I) vibration analysis with no-crack and no-hole with a bolted joint; (I1) vibration analysis with a surface crack and no-hole with a bolted joint; (III) vibration analysis with two surface cracks and no-hole with a bolted joint; (IV) vibration analysis with no-crack and a hole with a bolted joint; (V) vibration analysis with a surface crack and a hole with a bolted joint; (VI) vibration analysis with two surface cracks and a hole with a bolted joint. For these experimental steps, an impact hammer with a force transducer is used to excite the uncracked or cracked composite beams through the selected points. After the excitation, the responses are obtained by an accelerometer. The vibration measurements are completed using a microprocessor-based data acquisition system and nCode GlyphWorks software. Results are given in tabular and graphical forms.展开更多
Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torq...Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torque and internal fixation strength. While polyaxial screws facilitate the assembly of the connecting rod, but its ball-in-cup locking mechanism reduces the static compressive bending yield strength as compared with monoaxial screws. Our study aimed to assess the mechanical performance of a modified pedicle screw. Methods: In this study, the tail of the screw body of the modified pedicle screw was designed to be a cylindershaped structure that well matched the inner wall of the screw head and the screw head only rotated around the cyclinder. Monoaxial screws, modified screws and polyaxial screws were respectively assembled into 3 groups ofvertebrectomy models simulated by ultra high molecular weight polyethylene (UHMWPE) blocks. This model was developed according to a standard for destructive mechanical testing published by the American Society for Testing Materials (ASTM F1717-04). Each screw design had 6 subgroups, including 3 for static tension, load compression and torsion tests, and the rest for dynamic compression tests. In dynamic tests, the cyclic loads were 25%, 50%, and 75% of the compressive bending ultimate loads respectively. Yield load, yield ultimate load, yield stiffness, torsional stiffness, cycles to failure and modes of failure for the 3 types of screws were recorded. The results of modified screws were compared with those ofmonoaxial and polyaxial screws. Results: In static tests, results of bending stiffness, yield load, yield torque and torsional stiffness indicated no significant differences between the modified and monoaxial screws (P〉0.05), but both differed significantly from those ofpolyaxial screws (P〈0.05). In dynamic compression tests, both modified and monoaxial screws showed failures that occurred at the insertion point of screw body into the UHMWPE block, while the polyaxial screw group showed screw body swung up and down the screw head because of loosening of the ball-in-cup mechanism. Conclusions: The modified screw is well-designed and biomechanically improved. And it can provide sufficient stability for segment fixation as monoaxial screws.展开更多
文摘In this study, in order to determine the very early load transfer behavior in the bolted joint connection, experimental dynamic analysis of different laminated glass beams including two surface cracks is considered. For this purpose, both three different plastic interlayers (i.e., three types of polyvinyl butyral--PVB) and three different glass-lamina thicknesses are taken into account. Effects of the plastic interlayer, thickness of the glass-lamina, number of surface cracks and their locations on the vibration characteristics/structural performances are examined experimentally. Vibration tests are performed to present free vibration characteristics of the laminated glass beams under clamped-free boundary conditions. Experimental dynamic analysis consists of six parts: (I) vibration analysis with no-crack and no-hole with a bolted joint; (I1) vibration analysis with a surface crack and no-hole with a bolted joint; (III) vibration analysis with two surface cracks and no-hole with a bolted joint; (IV) vibration analysis with no-crack and a hole with a bolted joint; (V) vibration analysis with a surface crack and a hole with a bolted joint; (VI) vibration analysis with two surface cracks and a hole with a bolted joint. For these experimental steps, an impact hammer with a force transducer is used to excite the uncracked or cracked composite beams through the selected points. After the excitation, the responses are obtained by an accelerometer. The vibration measurements are completed using a microprocessor-based data acquisition system and nCode GlyphWorks software. Results are given in tabular and graphical forms.
文摘Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torque and internal fixation strength. While polyaxial screws facilitate the assembly of the connecting rod, but its ball-in-cup locking mechanism reduces the static compressive bending yield strength as compared with monoaxial screws. Our study aimed to assess the mechanical performance of a modified pedicle screw. Methods: In this study, the tail of the screw body of the modified pedicle screw was designed to be a cylindershaped structure that well matched the inner wall of the screw head and the screw head only rotated around the cyclinder. Monoaxial screws, modified screws and polyaxial screws were respectively assembled into 3 groups ofvertebrectomy models simulated by ultra high molecular weight polyethylene (UHMWPE) blocks. This model was developed according to a standard for destructive mechanical testing published by the American Society for Testing Materials (ASTM F1717-04). Each screw design had 6 subgroups, including 3 for static tension, load compression and torsion tests, and the rest for dynamic compression tests. In dynamic tests, the cyclic loads were 25%, 50%, and 75% of the compressive bending ultimate loads respectively. Yield load, yield ultimate load, yield stiffness, torsional stiffness, cycles to failure and modes of failure for the 3 types of screws were recorded. The results of modified screws were compared with those ofmonoaxial and polyaxial screws. Results: In static tests, results of bending stiffness, yield load, yield torque and torsional stiffness indicated no significant differences between the modified and monoaxial screws (P〉0.05), but both differed significantly from those ofpolyaxial screws (P〈0.05). In dynamic compression tests, both modified and monoaxial screws showed failures that occurred at the insertion point of screw body into the UHMWPE block, while the polyaxial screw group showed screw body swung up and down the screw head because of loosening of the ball-in-cup mechanism. Conclusions: The modified screw is well-designed and biomechanically improved. And it can provide sufficient stability for segment fixation as monoaxial screws.