针对传统蚂蚁遗传混合算法收敛速度慢的特点,提出了一种新的动态蚂蚁遗传混合算法。新算法采用最佳融合点评估策略,动态地控制遗传算法与蚂蚁算法的调用时机,并设计了相应的信息素更新方法,有效减少了算法的冗余迭代次数,提高了搜索速度...针对传统蚂蚁遗传混合算法收敛速度慢的特点,提出了一种新的动态蚂蚁遗传混合算法。新算法采用最佳融合点评估策略,动态地控制遗传算法与蚂蚁算法的调用时机,并设计了相应的信息素更新方法,有效减少了算法的冗余迭代次数,提高了搜索速度;同时引入迭代调整阈值控制算法后期的遗传操作和蚂蚁规模,加快了种群进化速度,从而更快地找到最优解。通过对Muth and Thompson基准问题进行计算机仿真,实验证明新算法收敛速度得到了提高。展开更多
文摘针对传统蚂蚁遗传混合算法收敛速度慢的特点,提出了一种新的动态蚂蚁遗传混合算法。新算法采用最佳融合点评估策略,动态地控制遗传算法与蚂蚁算法的调用时机,并设计了相应的信息素更新方法,有效减少了算法的冗余迭代次数,提高了搜索速度;同时引入迭代调整阈值控制算法后期的遗传操作和蚂蚁规模,加快了种群进化速度,从而更快地找到最优解。通过对Muth and Thompson基准问题进行计算机仿真,实验证明新算法收敛速度得到了提高。