A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law ...A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.展开更多
A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual ...A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.展开更多
A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block mode...A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.展开更多
AIM: To examine expression profile of gallbladder using microarray and to investigate the role of gallbladder in lipid homeostasis.METHODS: 33P-labelled cDNA derived from total RNA of gallbladder tissue was hybridized...AIM: To examine expression profile of gallbladder using microarray and to investigate the role of gallbladder in lipid homeostasis.METHODS: 33P-labelled cDNA derived from total RNA of gallbladder tissue was hybridized to a cDNA array representing 17 000 cDNA clusters. Genes with intensities ≥2 and variation <0.33 between two samples were considered as positive signals with subtraction of background chosen from an area where no cDNA was spotted. The average gray level of two gallbladders was adopted to analyze its bioinformatics. Identified target genes were confirmed by touch-down polymerase chain reaction and sequencing.RESULTS: A total of 11 047 genes expressed in normal gallbladder, which was more than that predicted by another author, and the first 10 genes highly expressed (high gray level in hybridization image), e.g. ARPC5 (2 225.88±90.46), LOC55972 (2 220.32±446.51) and SLC20A2 (1 865.21±98.02), were related to the function of smooth muscle contraction and material transport. Meanwhile, 149 lipid-related genes were expressed in the gallbladder, 89 of which were first identified (with gray level in hybridization image), e.g. FASN (11.42±2.62), APOD (92.61±8.90) and CYP21A2 (246.11±42.36), and they were involved in each step of lipid metabolism pathway. In addition, 19 of those 149 genes were gallstone candidate susceptibility genes (with gray level in hybridization image), e.g. HMGCR (10.98±0.31), NPC1 (34.88±12.12) and NR1H4 (16.8±0.65), which were previously thought to be expressed in the liver and/or intestine tissue only. CONCLUSION: Gallbladder expresses 11 047 genes and takes part in lipid homeostasis.展开更多
An evolution model of KAD Dynamic Model Network(KDMN) is proposed to study the reason of hot node and simulate the process of network evolution based on node behavior from a holistic perspective.First,some symbols and...An evolution model of KAD Dynamic Model Network(KDMN) is proposed to study the reason of hot node and simulate the process of network evolution based on node behavior from a holistic perspective.First,some symbols and meanings are introduced to describe nodes relationship and network states at a time step.Second,some evolution rules for network are formulated when node behaviors of join,exit,routing table update,data retrieval and content index distribution happen with different contextual scene in KAD network.In addition,a lightweight simulator is designed to implement the KDMN model.Moreover,an example of how to use the simulator to simulate the network changes in order to observe the result is described in detail.Finally,the KDMN is applied to analyze the reason for the formation of hot nodes in the BT and eMule network in the experiment.The different evolution principles of local priority,global priority and hybrid random are adopted based on the provision of network protocol of BT and eMule.The result of this experiment demonstrates that there are some hot nodes exist in the KAD network.However,the principle of hybrid random can effectively alleviate the phenomenon that a node is widely linked with others compared with global and local priority.展开更多
Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are establishe...Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.展开更多
Signal traits are often linked with the physiological state and behavior of their bearer. Direct examination of the causal links among these variables has provided substantial insight into the information content of s...Signal traits are often linked with the physiological state and behavior of their bearer. Direct examination of the causal links among these variables has provided substantial insight into the information content of signals, and into the costs and benefits of signal expression. Yet recent empirical work suggests that the social context in which signals are developed and displayed can play a major role not only in how signals are received, but also in coordinating and mediating the signaling phenotype itself. Here we review both well-established and emerging evidence for direct feedbacks among an individual's physiological state, be- havior, and signal elaboration. We then describe an integrative view of signaling that takes into account the bidirectional rela- tionships among components of phenotype and the social context in which signals are developed and displayed. Integrating dy- namic feedback between context and phenotype within models of the evolution and maintenance of signals may yield insights into how signals evolve, how signaling phenotypes are coordinated and maintained on ecological and evolutionary time scales, and how static signals continue to convey relevant phenotypic information about their bearer through time.展开更多
Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind ...Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind erosion prediction system(WEPS),and other soil wind erosion models have been successively established,and great advances have been achieved.Here we briefly review the soil wind erosion research course and analyze the advantages and disadvantages of the current soil wind erosion models.From the perspective of the dynamics of wind erosion,we classified the factors affecting soil wind erosion into three categories,namely,wind erosivity factors(WEF),soil antierodibility factors(SAF),and roughness interference factors(RIF).We proposed the concept of a standard plot of soil wind erosion to solve the problem of uncertainty of the soil wind erosion modulus on a spatial scale,and provided methods to set similarity conditions in wind tunnel simulation experiments and to convert the spatial scale of the wind erosion modulus from the standard plot to a large scale field.We also proposed a conceptual model on the basis of the dynamics of soil wind erosion with the theoretical basis that wind produces a shear force on the soil surface.This shear force is partitioned by barely erodible soil surfaces and roughness elements on the ground,and the amount of soil loss by wind should be calculated by comparing the shear force of the wind on barely erodible soil surfaces with the anti-erosion force of the surface soil.One advantage of this conceptual model is that the calculated soil wind erosion modulus is not subject to changes of spatial scale.Finally,we recommended continual improvement of the existing models while also establishing new models.展开更多
基金This project is supported by the National Natural Science Foundation of China,under grant No.10872047.
文摘A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.
基金supported by the National Natural Science Foundation of China(Nos.51679079 and 51209080)the Fundamental Research Funds for the Central Universities(No.2014B17314)+3 种基金the Program for Excellent Innovative Talents of Hohai Universitythe Open Fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University(HESS-1703)the Open Fund Program of Key Laboratory of Water & Sediment Science and Water Hazard Prevention,Changsha University of Science & Technology(2015SS03)the 111 Project(B12032)
文摘A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.
文摘A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.
基金Supported by the National Natural Science Foundation of China,No. 30271272, and the Foundation of Chinese National Human Genome Center at Shanghai, No. CHCS-99M-06
文摘AIM: To examine expression profile of gallbladder using microarray and to investigate the role of gallbladder in lipid homeostasis.METHODS: 33P-labelled cDNA derived from total RNA of gallbladder tissue was hybridized to a cDNA array representing 17 000 cDNA clusters. Genes with intensities ≥2 and variation <0.33 between two samples were considered as positive signals with subtraction of background chosen from an area where no cDNA was spotted. The average gray level of two gallbladders was adopted to analyze its bioinformatics. Identified target genes were confirmed by touch-down polymerase chain reaction and sequencing.RESULTS: A total of 11 047 genes expressed in normal gallbladder, which was more than that predicted by another author, and the first 10 genes highly expressed (high gray level in hybridization image), e.g. ARPC5 (2 225.88±90.46), LOC55972 (2 220.32±446.51) and SLC20A2 (1 865.21±98.02), were related to the function of smooth muscle contraction and material transport. Meanwhile, 149 lipid-related genes were expressed in the gallbladder, 89 of which were first identified (with gray level in hybridization image), e.g. FASN (11.42±2.62), APOD (92.61±8.90) and CYP21A2 (246.11±42.36), and they were involved in each step of lipid metabolism pathway. In addition, 19 of those 149 genes were gallstone candidate susceptibility genes (with gray level in hybridization image), e.g. HMGCR (10.98±0.31), NPC1 (34.88±12.12) and NR1H4 (16.8±0.65), which were previously thought to be expressed in the liver and/or intestine tissue only. CONCLUSION: Gallbladder expresses 11 047 genes and takes part in lipid homeostasis.
文摘An evolution model of KAD Dynamic Model Network(KDMN) is proposed to study the reason of hot node and simulate the process of network evolution based on node behavior from a holistic perspective.First,some symbols and meanings are introduced to describe nodes relationship and network states at a time step.Second,some evolution rules for network are formulated when node behaviors of join,exit,routing table update,data retrieval and content index distribution happen with different contextual scene in KAD network.In addition,a lightweight simulator is designed to implement the KDMN model.Moreover,an example of how to use the simulator to simulate the network changes in order to observe the result is described in detail.Finally,the KDMN is applied to analyze the reason for the formation of hot nodes in the BT and eMule network in the experiment.The different evolution principles of local priority,global priority and hybrid random are adopted based on the provision of network protocol of BT and eMule.The result of this experiment demonstrates that there are some hot nodes exist in the KAD network.However,the principle of hybrid random can effectively alleviate the phenomenon that a node is widely linked with others compared with global and local priority.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2010CB428703)Oceanic Science Fund for Young Scholar of SOA (Nos. 2010225, 2010118)+1 种基金Public Science and Technology Research Funds Projects of Ocean of China (Nos. 201005008, 201005009)Open Fund of MOIDAT (No. 201011)
文摘Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.
基金Acknowledgements During the span of this project our work was funded by the National Science Foundation (DEBCAREER 1149942 to RJS), and the National Evolutionary Synthesis Center (NSF #EF- 4120905606) through a graduate fellowship for DMZ.
文摘Signal traits are often linked with the physiological state and behavior of their bearer. Direct examination of the causal links among these variables has provided substantial insight into the information content of signals, and into the costs and benefits of signal expression. Yet recent empirical work suggests that the social context in which signals are developed and displayed can play a major role not only in how signals are received, but also in coordinating and mediating the signaling phenotype itself. Here we review both well-established and emerging evidence for direct feedbacks among an individual's physiological state, be- havior, and signal elaboration. We then describe an integrative view of signaling that takes into account the bidirectional rela- tionships among components of phenotype and the social context in which signals are developed and displayed. Integrating dy- namic feedback between context and phenotype within models of the evolution and maintenance of signals may yield insights into how signals evolve, how signaling phenotypes are coordinated and maintained on ecological and evolutionary time scales, and how static signals continue to convey relevant phenotypic information about their bearer through time.
基金supported by the National Natural Science Foundation of China(Grant No.41330746)
文摘Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind erosion prediction system(WEPS),and other soil wind erosion models have been successively established,and great advances have been achieved.Here we briefly review the soil wind erosion research course and analyze the advantages and disadvantages of the current soil wind erosion models.From the perspective of the dynamics of wind erosion,we classified the factors affecting soil wind erosion into three categories,namely,wind erosivity factors(WEF),soil antierodibility factors(SAF),and roughness interference factors(RIF).We proposed the concept of a standard plot of soil wind erosion to solve the problem of uncertainty of the soil wind erosion modulus on a spatial scale,and provided methods to set similarity conditions in wind tunnel simulation experiments and to convert the spatial scale of the wind erosion modulus from the standard plot to a large scale field.We also proposed a conceptual model on the basis of the dynamics of soil wind erosion with the theoretical basis that wind produces a shear force on the soil surface.This shear force is partitioned by barely erodible soil surfaces and roughness elements on the ground,and the amount of soil loss by wind should be calculated by comparing the shear force of the wind on barely erodible soil surfaces with the anti-erosion force of the surface soil.One advantage of this conceptual model is that the calculated soil wind erosion modulus is not subject to changes of spatial scale.Finally,we recommended continual improvement of the existing models while also establishing new models.